激光光谱技术在溶解无机碳碳同位素分析中的应用
Carbon isotopic analysis of dissolved inorganic carbon by laser spectroscopic technique
-
摘要: 天然水溶解无机碳(DIC)碳同位素组成(δ13CDIC)分析是研究碳元素循环及相关生物地球化学过程的重要手段之一。近年来,激光光谱技术的发展为碳同位素比值测定提供了一种新的方法。文中阐述了一种总有机碳仪—激光光谱同位素仪联用在线测定水中DIC含量及δ13CDIC值的技术方法。该方法具有较高的测试精度,DIC含量测试结果相对标准偏差能控制在1%以内,δ13CDIC值精度优于±0.1‰(1σ)。不同类型岩溶水δ13CDIC值的测试结果与质谱仪法结果接近,差值总体≤0.3‰,表明该测试技术具有较高的准确度。由于吸收光谱信号与目标气体浓度有关,较低的CO2浓度会影响激光光谱仪的稳定性,在测试时需要根据DIC浓度控制样品进样量,最好采用多标样法来校准仪器测量值。激光光谱技术因其具有低成本、测试快速可靠,且仪器小巧便携等特点,在岩溶水溶解无机碳碳同位素分析中具有较大应用前景。Abstract: The analyses of the content of Dissolved Inorganic Carbon (DIC) in natural water and its stable carbon isotopic composition (δ13CDIC) provide an useful means for investigating the carbon cycle and its related biogeochemical processes. In recent years, the laser spectroscopic technology has provided us with a new method for isotopic analysis of DIC in water. In this study, we applied a TOC analyzer on-line with a laser Cavity Ring-Down Spectroscopy (CRDS) to determine DIC content and δ13CDIC value. The analytical precision and accuracy were discussed and both results determined by this system and the Isotopic Ratio Mass Spectrometer (IRMS) were compared. The results of the measurement of a large number of laboratory working standards and water samples with a wide range of DIC concentrations and δ13CDIC values show that such TOC-CRDS system has high analytical precisions. The relative standard deviation of DIC content test results are within 1%, and the precision of δ13CDIC is better than ±0.1‰ (1σ). Measured δ13CDIC values by both TOC-CRDS and IRMS methods are close to each other, with a difference of mostly ≤0.3‰, an indicative of high accuracy for the TOC-CRDS system. Because the absorption spectrum is a function of gas concentration, however, the analytical precision and accuracy could be lowered for samples with lower CO2 yielding in the system. Thus, it is crucially important to make sure that the sample injected into the TOC analyzer has optimal carbon content. Moreover, it is better to use multiple working standards that have different δ13CDIC value to calibrate the measured values of water samples. Compared with the IRMS, the laser spectrometer is less costly and has advantages in fast, efficient determination of both DIC content and δ13CDIC value. In all, the machine is small and can be operated in the field, and it therefore has great potential to be one of useful methods in high-frequency monitoring of karst water, which benefits the study of karst dynamic system, karst critical zone processes and their responses to climatic and environmental changes.
-
Key words:
- laser spectrometer /
- dissolved inorganic carbon /
- carbon isotope /
- karst water
-
[1] 黄奇波, 覃小群, 唐萍萍, 等. 不同岩溶环境条件下岩溶地下水中δ13CDIC特征[J]. 地球与环境, 2012, 40(4): 505-511. [2] 刘再华, 袁道先, 何师意. 不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义:以我国几个典型岩溶地区为例[J]. 地质学报, 1997, 71(3): 281-288. [3] 蒲俊兵. 重庆地区岩溶地下河水溶解无机碳及其稳定同位素特征[J]. 中国岩溶, 2013, 32(2): 123-132. [4] Li S L, Liu C Q, Li J, et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints[J]. Chemical Geology, 2010, 277(3): 301-309. [5] 刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414. [6] 谢银财, 朱同彬, 杨慧, 等. 硫酸对典型岩溶流域碳酸盐岩溶蚀及碳循环意义:以广西平果岩溶流域为例[J]. 第四纪研究, 2017, 37(6): 1271-1282. [7] 陈波, 杨睿, 刘再华, 等. 水生光合生物对茂兰拉桥泉及其下游水化学和δ13CDIC昼夜变化的影响[J]. 地球化学, 2014, 43(4): 375-385. [8] Pu J, Li J, Khadka M B, et al. In-stream metabolism and atmospheric carbon sequestration in a groundwater-fed karst stream[J]. Science of the Total Environment, 2017, 579: 1343-1355. [9] Li J Y, Li T Y. Seasonal and annual changes in soil/cave air pCO2 and the δ13CDIC of cave drip water in response to changes in temperature and rainfall[J]. Applied Geochemistry, 2018, 93: 94-101. [10] Li T Y, Huang C X, Tian L, et al. Variation of δ13C in plant-soil-cave systems in karst regions with different degrees of rocky desertification in southwest China[J]. Journal of Cave & Karst Studies, 2018, 80(4): 212-228. [11] 黄春霞, 李廷勇, 韩立银, 等. 重庆芙蓉洞洞穴水δ13CDIC的变化特征及影响因素[J]. 中国岩溶, 2016, 35(3): 299-306. [12] Wu X, Zhu X, Pan M, et al. Dissolved inorganic carbon isotope compositions of drip water in Panlong cave, southwest China[J]. Environmental earth sciences, 2015, 74(2): 1029-1037. [13] Zhao M, Zeng C, Liu Z, et al. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 2010, 388(1): 121-130. [14] 肖时珍, 熊康宁, 蓝家程, 等. 石漠化治理对岩溶地下水水化学和溶解无机碳稳定同位素的影响[J]. 环境科学, 2015, 36(5): 1590-1597. [15] 孙海龙, 刘再华, 晏浩, 等. 不同方法萃取的溶解无机碳的δ13C值比较分析[J]. 中国岩溶, 2013, 32(1): 117-122. [16] 杜广鹏, 王旭, 张福松. GasBench II顶空瓶内空气背景对<100 μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探[J]. 岩矿测试, 2010, 29(6): 631-638. [17] 杨会, 王华, 吴夏, 等. 不同预处理方法对水中溶解无机碳碳同位素的影响[J]. 地质学报, 2015, 89(s1): 120-121. [18] 唐伟, 王华, 蓝高勇, 等. Gas Bench II-IRMS磷酸法在线测定水中溶解无机碳碳同位素分析条件及影响因素[J]. 中国岩溶, 2017, 36(3): 419-426. [19] 杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6): 675-680. [20] 石晓, 刘汉彬, 张佳, 等. 激光光谱技术在稳定同位素组成分析中的应用现状[J]. 世界核地质科学, 2016, 33(4): 237-243. [21] Friedrichs G, Bock J, Temps F, et al. Towards continuous monitoring of seawater 13CO2/12CO2 isotope ratio: Performance of cavity-ringdown spectroscopy and linewidth effects[J]. Limnology and Oceanography: Methods, 2010, 8(10): 539-551. [22] Conaway C H, Thomas B, Saad N, et al. Carbon isotope analysis of dissolved organic carbon in fresh and saline (NaCl) water via continuous flow cavity ring-down spectroscopy following wet chemical oxidation[J]. Isotopes in Environmental & Health Studies, 2015, 51(2): 344-358. [23] 张丽娜, 卢照方. 浅析波长扫描光腔衰荡光谱技术[J]. 现代科学仪器, 2012 (1): 136-138, 143. [24] 吴夏, 涂林玲, 杨会, 等. 水样中溶解性无机碳同位素测试前处理方法对比研究[J]. 岩矿测试, 2013, 32(4): 659-664.
点击查看大图
计量
- 文章访问数: 1371
- HTML浏览量: 619
- PDF下载量: 58
- 被引次数: 0