近27a来典型白云岩流域岩溶碳汇变化及其调控机制——以贵州施秉黄洲河流域为例
Variation and rgulation mechanism of karst carbon sink in typical dolomite basin in recent 27 years:A case study of the Huangzhouhe basin in Shibing, Guizhou
-
摘要: 以贵州省施秉县黄洲河典型白云岩岩溶小流域为例,基于白云石化学平衡热力学方法分别定量估算出1990-1992年、2001-2003年及2016-2018年白云岩流域的年均岩溶碳汇强度,并分析其对气候变化、土地利用调控的响应,结果表明:(1)流域内第二个时段年均有效降雨最大,其次是第一个时段,第三个时段的最小;(2)流域内主要以有林地为主,旱地、建设用地持续增加但增长速率减缓,总体上流域植被覆盖度呈现上升趋势;(3)流域整体的岩溶碳汇强度由大到小依次为2002年、1990年、2016年,水田与旱地对岩溶碳汇贡献较大;(4)气候变化与土地利用共同控制岩溶碳汇,碳汇强度可能不随地类正向演替而增大。Abstract: The response mechanism of karst carbon sink to climate change and land use patterns remains controversial. Dolomites with higher solubility than limestone may have higher karst carbon sink potential. However, most previous studies tend to calculate the karst carbon sink value of limestone and ignore the contribution of dolomite to karst carbon sink. Therefore, this paper selects the Huangzhouhe dolomite basin in Shibing county, Guizhou Province as the research object which has developed a typical dolomite karst landform and has become a world natural heritage protected area. We quantitatively estimate the annual average karst carbon sink strength of the dolomite basin in 1990-1992, 2001-2003 and 2016-2018 by using the dolomite chemical equilibrium thermodynamic method derived from the dolomite dissolution equilibrium equation, with a view to estimating the dolomite karst carbon sink value and its response mechanism to the joint effect of climate change and land use. The results show that,(1) The average annual rainfall in the basin decreases with time, but the effective rainfall in the second period is the largest due to the difference in evapotranspiration, followed by the first period, and the effective rainfall in the third period is the smallest;(2)The basin is mainly forested land. With the gradual increase of human activities, paddy fields, dry land, and construction land continue to increase, but the growth rate of the latter two types of land has slowed down, and due to the environmental regulations of the World Natural Heritage Site, the overall vegetation coverage of the basin shows a trend of restoration;(3)The overall karst carbon sink intensity in the basin at different periods of time is the second period, the first period, and the third period, and the corresponding karst carbon sink values are 31.68, 33.40,27.93 t CO2·km-2·a-1,respectively. Among different types of land use, although the carbon dioxide partial pressure of natural land is higher than that of land used for human activities,natural forest land with higher vegetation coverage causes greater water loss,making dry land and paddy fields affected by human activities significantly higher.The karst carbon sink value reached 31.97-32.64 t CO2·km-2·a-1, while the karst carbon sink value of forest land and shrubland was relatively small, only 28.64-30.48 t CO2·km-2·a-1.According to the above analysis, we believe that climate change and land use jointly act on karst carbon sink, and the rainfall runoff effect dominated by climate change obviously masks the carbon dioxide effect, and the intensity of karst carbon sink may not increase with the positive succession of land use. Moreover, by comparing the calculation results of karst carbon sink in limestone basins under the same climatic conditions, although different calculation methods and basin areas will lead to certain differences in karst carbon sink values, dolomite karst carbon sink still have a large karst carbon sink potential. Therefore, in the calculation of global terrestrial karst carbon sink, the role of global dolomite karst carbon sink should be taken seriously.
-
[1] IPCC. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T F, Qin D, Plattner GK, et al][M]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2013. [2] Liu Z , Dreybrodt W . Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Ence Bulletin, 2015, 60(2):182-191. [3] 袁道先,蒋勇军,沈立成,等. 现代岩溶学[M].北京:科学出版社,2016: 213-214. [4] 袁道先,刘再华,林玉石.中国岩溶动力系统[M].北京:地质出版社,2002: 6-7. [5] 何若雪,孙平安,何师意,等.漓江流域中下游无机碳通量动态变化及影响因素[J].中国岩溶,2017,36(1):109-118. [6] 曾成,赵敏,杨睿,等.缺土的板寨原始森林区岩溶地下河系统的水-碳动态特征[J].地球科学(中国地质大学学报),2012,37(2):253-262. [7] 何江湖,肖时珍,曾成,等.湿润亚热带典型白云岩流域的化学剥蚀速率:以贵州施秉黄洲河流域为例[J].地球与环境,2018,46(3):274-281. [8] 原雅琼,孙平安,苏钊,等.岩溶流域洪水过程水化学动态变化及影响因素[J].环境科学,2019,40(11):4889-4899. [9] 蓝家程,肖时珍.岩溶区土地利用变化对土壤有机碳与岩溶碳汇的影响研究进展[J].生态学杂志,2017,36(9):2633-2640. [10] 王世杰,刘再华,倪健,等.中国南方喀斯特地区碳循环研究进展[J].地球与环境,2017,45(1):2-9. [11] 何春,曾成,肖时珍,等.湿润亚热带典型白云岩流域的水文水化学动态特征初步研究:以贵州施秉黄洲河流域为例[J].地球与环境,2020,48(3):279-293. [12] 肖时珍. 亚热带典型白云岩流域化学剥蚀速率及碳汇潜力[D].重庆:西南大学,2017. [13] Groeneveld D P , Baugh W M . Correcting satellite data to detect vegetation signal for eco-hydrologic analyses[J]. Journal of Hydrology, 2007, 344(1-2):135-145. [14] Zhang L , Dawes W R , Walker G R . Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research, 2001, 37(3):701-708. [15] 钱会,马致远,李培月. 水文地球化学[M].北京:地质出版社,2005: 61-62. [16] Brook G A , Folkoff M E , Box E O . A world model of soil carbon dioxide[J]. Earth Surface Processes & Landforms, 2010, 8(1): 79-88. [17] Plummer L Niel, Busenberg Eurybiades. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90?°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J].Geochimica et Cosmochimica Acta,1982, 46(6):1011-1040. [18] Dreybrodt W. Processes in Karst Systems[M]. Berlin:Springer Berlin Heidelberg,1988: 511-512. [19] 刘再华.岩溶作用及其碳汇强度计算的“入渗-平衡化学法”:兼论水化学径流法和溶蚀试片法[J].中国岩溶,2011,30(4):379-382. [20] 李亮. 潮田河流域(岩溶)地质碳汇过程及通量估算研究[D].北京:中国地质科学院,2013. [21] 许月卿,罗鼎,冯艳,等.西南喀斯特山区土地利用/覆被变化研究:以贵州省猫跳河流域为例[J].资源科学,2010,32(9):1752-1760. [22] 刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(Z1):95-102. [23] 朱辉,曾成,刘再华,等.岩溶作用碳汇强度变化的土地利用调控规律:贵州普定岩溶水-碳通量大型模拟试验场研究[J].水文地质工程地质,2015,42(6):120-125. [24] 刘再华.一种特殊的碳酸盐沉积及其环境意义:“贵州乌江渡水电站灌浆帷幕老化问题的研究”中的发现[J].地学前缘,2001,8(1):197-201. [25] 彭弋倪. 人类活动对流域风化碳汇过程的影响:大河流域与城市表面小流域的范例研究[D].南京:南京大学,2018. [26] 张园,袁凤辉,王安志,等.2001—2018年长白山自然保护区生长季NDVI变化特征及其对气候变化的响应[J].应用生态学报,2020,31(4):1213-1222. [27] Jozsef Szilagyi . Can a vegetation index derived from remote sensing be indicative of areal transpiration?[J]. Elsevier B V , 2000, 127(1):65-79. [28] 闫志为,刘辉利,张志卫.温度及CO2对方解石、白云石溶解度影响特征分析[J].中国岩溶,2009,28(1):7-10,41. [29] 孙从建,郑振婧,李新功,等.黄土塬面保护区潜在蒸发量时空变化及其与气象、环流因子关系分析[J].自然资源学报,2020,35(4):857-868. [30] Zeng Cheng, Liu Zaihua, Zhao Min,et al. Hydrologically-driven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Elsevier B V ,2016,533:74-90. [31] Zhang Y K,K E Schilling. Effects of land cover on water table, soil moisture,evapotranspiration, and groundwater recharge: A Field observation and analysis[J].Journal of Hydrology,2006,319(1-4):328-338. [32] 章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011,56(26):2174-2180. [33] 曾思博. 西南地区近40年气候变化及其对岩溶作用碳汇的影响研究[D].重庆:西南大学,2017. [34] 李汇文,王世杰,白晓永,等.气候变化及生态恢复对喀斯特槽谷碳酸盐岩风化碳汇的影响评估[J].生态学报,2019,39(16):6158-6172. [35] 周孟霞,莫碧琴,杨慧.岩溶石漠化区李树林土壤岩溶作用强度及碳汇效应[J].农业工程学报,2020,36(13):116-123. [36] 柯静,邓艳,岳祥飞,等.典型岩溶断陷盆地溶蚀速率对海拔高度和土地利用方式的响应[J/OL].地球学报:1-10[2020-12-14].http://kns.cnki.net/kcms/detail/11.3474.P.202008 10.1706.006.html.
点击查看大图
计量
- 文章访问数: 1256
- HTML浏览量: 557
- PDF下载量: 52
- 被引次数: 0