桂林凉风洞洞穴系统垂向碳迁移特征及其影响因素
Characteristics and influencing factors of vertical carbon migration in the cave system of Liangfeng cave in Guilin
-
摘要: 2017年11月至2018年11月,以桂林毛村凉风洞为研究对象,进行大气环境和洞穴环境野外监测,同时在洞穴上覆土壤30 cm和60 cm处开展试片溶蚀实验,并在洞穴内部进行试片溶蚀和滴水脱气监测,以测定垂向碳迁移主要过程中的CO2浓度和δ13C-CO2值。结果表明:(1)“大气—土壤—洞穴”垂向碳迁移系统能够与洞穴通风一起影响洞穴系统内部的CO2分布模式。洞口通风方向的转变取决于洞内温度与外界温度的差异,少雨的11月中旬到次年3月初通风方向为从洞外到洞内,此时垂向碳迁移能力弱,洞内CO2的分布由洞口通风主导;3月初至9月中旬,洞内外温差逐渐过渡并反转,洞口通风方向为从内向外,且降雨强度大,垂向碳迁移活跃并主导洞内CO2分布;(2)岩溶关键带土壤呼吸的强度决定了垂向碳迁移系统可迁移的碳量,洞内CO2分布的季节性变异本质上是外界环境在垂向碳迁移系统和洞穴模式上的响应;(3)洞穴上覆碳酸盐岩土下溶蚀实验表明土下溶蚀可削弱土壤碳源作用。土壤30 cm和60 cm处碳酸盐岩溶蚀速率分别为:0.48 mol?m-2?a-1和0.96 mol?m-2?a-1,而洞穴第一洞厅监测点的碳酸盐岩脱气速率为49.35 mol?m-2?a-1、第二洞厅内为9.07 mol?m-2?a-1,由垂向碳迁移系统运移到洞穴内部的溶解了土壤CO2的滴水脱气作用显著。Abstract: In order to study the characteristics of vertical carbon migration in open karst cave system and its influencing factors. From November 2017 to November 2018, taking Liangfeng cave in the underground river basin of Maocun village, Guilin as the research object,we conducted real-time monitoring of the atmospheric environment and cave environment in the field. At the same time, a test piece dissolution experiment was carried out at 30 cm and 60 cm of the cave overlying soil ,and the test piece dissolution and drip degassing monitoring were carried out simultaneously in the cave so as to measure the CO2 concentration and δ13C—CO2 value in the main process of vertical carbon migration.The results show,(1)The "atmosphere-soil-cave" vertical carbon migration system can affect the CO2 distribution pattern inside the cave system together with cave ventilation. The change of the ventilation direction of the cave depends on the temperature difference between the inside and outside of the cave.The ventilation direction in the cold season with little rain was from outside the cave to the inside of the cave. At this time, the vertical carbon migration ability was weak, and the distribution of CO2 inside cave was dominated by the ventilation of cave entrance. From early March to mid-September, the temperature difference between inside and outside of the cave gradually transitioned and reversed. The ventilation direction of the cave entrance was from the inside to the outside, with high rainfall intensity. The vertical carbon migration was active and dominated the CO2 distribution in the cave; (2) The intensity of soil respiration in the karst critical zone determines the amount of carbon that can be transferred by the vertical carbon migration system. The seasonal variation of CO2 distribution in the cave was essentially the response of the external environment to the vertical carbon migration system and cave ventilation; (3) The dissolution experiment of carbonate rock on the overlying roof of the cave shows that the dissolution under the soil can weaken the role of soil carbon source. The dissolution rate of carbonate rock at 30 cm and 60 cm of soil are 0.48 mol·m-2·a-1 and 0.96 mol·m-2·a-1, respectively; while the carbonate rock precipitation-degassing rate at the monitoring point of the first cave hall was 49.35 mol·m-2·a-1 and 9.07 mol·m-2·a-1 in the second cave hall. The drip degrassing of dissolved soil CO2 transported by the vertical carbon migration system to the inside of the cave was significantly.
-
[1] 张强, 周忠发, 陈全,等.织金洞CO2浓度空间分布与昼夜变化的规律及成因分析[J].科学技术与工程,2016,16(26):18-27. [2] Zhang C L, Huang F, Yang H, et al. Characteristics of carbon cycle and the effect of carbon sink in karst system[J]. Earth and Environment, 2013, 41(4):378-386. [3] Zhao M, Zeng C, Liu Z. H. Influence of land use change on dissolved inorganic carbon and stable isotopic composition of karst groundwater[J]. Geochimica, 2009, 38(6):565-572. [4] 吴夏,潘谋成,曹建华,等.开放洞穴环境变化特征及其影响因素:以桂林凉风洞为例[J].中国岩溶,2019,38(3):361-369. [5] 任坤, 沈立成, 袁道先, 等. 2012-2013年重庆雪玉洞洞穴系统碳循环特征[J]. 地球科学, 2016, 41(8):1424-1434. [6] James U L Baldini, Frank McDermott, Dirk L Hoffmann,et al. Very high-frequency and seasonal cave atmosphere PCO〖_2〗variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records[J].Earth&Planetary Science Letters, 2008, 272(1):118-129. [7] 朱明秋,曹建华,郭芳.基于碳酸盐岩风化的碳源分析及土壤的影响作用机制[J].中国岩溶,2007,26(3):202-206. [8] 吴夏. 桂林洞穴滴水和现代沉积物对气候变化的响应研究[D]. 北京:中国地质大学(北京),2018. [9] 张绍云, 周忠发, 张强,等. 贵州织金洞洞穴CO2的来源及其空间分布特征[J]. 中国岩溶, 2016, 35(3):307-313. [10] 吴夏, 潘谋成,曹建华,等.广西桂林凉风洞秋冬季滴水和沉积物氧同位素对极端降水的记录研究[J].地球学报, 2018,39(1):53-61. [11] 刘金荣.广西热带岩溶研究[M]. 桂林:广西师范大学出版社,2004. [12] 黎玉芳, 李志鸿. 2013. 桂林地区气温与降水量的时间序列预测模型[J]. 广西科学, 2013, 20(2):107-110. [13] 蒋忠诚,杨德生,曹建华,等.中国水土流失防治与生态安全(西南岩溶区卷)[M].北京:科学出版社,2010. [14] 高金芳,周波,马涛,等.半干旱区不同土地利用方式下土壤呼吸特征[J].水土保持研究,2017,24(2):89-93. [15] 张蔷, 赵淑艳. 北京石花洞内CO2的监测与评价[J]. 中国岩溶, 1997,16(4):325-331. [16] Zhang L M, Xu Y C. CO2 concentration and its carbon and oxygen isotopic composition in Northwest China[J]. Chinese Science Bulletin, 1992,37(5):441-444. [17] 王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报,2007(5):1960-1968. [18] 袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008(3):355-365. [19] 马骏,唐海萍.内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化[J].植物生态学报,2011, 35(2):167-175. [20] 童晓宁, 周厚云, 黄颖, 等. 广东英德宝晶宫CO2浓度的时空变化特征[J]. 热带地理, 2013, 33(4):439-443. [21] 班凤梅,蔡炳贵.北京石花洞空气环境主要因子季节性变化特征研究[J].中国岩溶,2011,30(2):132-137. [22] 魏书精,罗碧珍,孙龙,等.森林生态系统土壤呼吸时空异质性及影响因子研究进展[J].生态环境学报,2013,22(4):689-704. [23] 邓琦,刘世忠,刘菊秀,等.南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J].地球科学进展,2007(9):976-986. [24] Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps.[J].Global Change Biology,2010,11(7):1024-1041. [25] 丁梦凯,胡晓农,曹建华,等.桂林毛村不同土地利用方式下土壤呼吸空间变异特征[J].环境科学,2018,40(2):924-933. [26] 曹建华, 杨慧, 康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J].科学通报,2011,56(26):2181-2187. [27] 张萍, 杨琰, 孙喆,等. 河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较[J]. 环境科学, 2017, 38(1):60-69. [28] Keeling C D.The concentration and isotopic abundances of carbon dioxide in the atmosphere[J].Tellus,2010,12(2):200-203. [29] Inoue H, Sugimura Y. The carbon isotopic ratio of atmospheric carbon dioxide at Tsukuba, Japan[J]. Journal of Atmospheric Chemistry, 1985, 2(4):331-344. [30] 张美良,朱晓燕,李涛,等.桂林现代洞穴碳酸盐——石笋的沉积速率及其环境意义[J].海洋地质与第四纪地质,2011,31(1):125-134.
点击查看大图
计量
- 文章访问数: 1386
- HTML浏览量: 541
- PDF下载量: 68
- 被引次数: 0