桂林典型岩溶区土壤CO2通量及其δ13CCO2季节性特征
Seasonal variation characteristics of soil respiration release and its isotopic composition in typical karst area, Guilin
-
摘要: 通过选用静态暗箱/气相色谱法,探讨桂林毛村典型岩溶区土壤CO2通量及其δ13C CO2的季节性演变规律,旨在揭示野外条件下土壤CO2及其δ13CCO2对环境因子变化的影响机制。同时野外原位监测大气温度、压强、土壤温度等环境参数来明确环境因子对土壤CO2的影响过程。结果表明:岩溶区土壤CO2通量及其δ13C CO2在季节时间尺度上呈现出相似的季节性变化规律,夏季土壤CO2通量较高,土壤δ13C CO2偏轻,且土壤CO2通量与土壤温度呈显著正相关关系。此外,夏季10 cm处土壤CO2通量明显高于0 cm,且该处δ13C CO2也偏轻于0 cm;冬季10 cm处土壤CO2通量与0 cm相差并不明显,而该处δ13C CO2却仍是偏轻于0 cm。在日时间尺度上10 cm土壤δ13C CO2明显偏轻于0 cm。Abstract: It is of great value to understand the variation amplitude and temporal dynamics of soil respiration on a global scale so as to accurately predict the change of soil respiration under future climate scenarios, and to evaluate the carbon neutrality goals and technical approaches. In this study,the static chamber/gas chromatography were used to establish soil CO2 flux and δ13C CO2seasonal variation in the typical karst area of Maocun village.This study mainly aims to reveal the influence mechanism of soil CO2 and δ13C CO2 on environmental factors under field conditions Guilin.The influence of environmental factors on soil CO2 flux and δ13C CO2 were determined by monitoring atmospheric temperature, pressure, soil temperature and other environmental parameters. The monitoring results showed that the seasonal variation of soil CO2 flux in the study area was obviously high in summer and low in winter, and the soil CO2 flux at 10 cm in summer was significantly higher than that at 0 cm in the surface layer, while there was no significant difference in winter. Moreover, the soil Q10 value increased from 1.90 to 2.39 when the depth varies from 0 cm to 10 cm, indicating that the soil respiration mainly came from this depth range. Soil temperature is the main environmental factor affecting the change of soil CO2 flux, and the two show an obvious positive correlation. Copmared with 10 cm,the CO2 at 0 cm surface layer was also affected by the dilution of diffusion. Because the diffusion coefficient of 12CO2 is greater than 13CO2, the soil δ13C CO2 is lighter than the atmospheric δ13C during the monitoring period, which has obvious seasonal characteristics of being lighter in summer and heavier in winter, and the δ13C CO2 at 10 cm is significantly lighter than that at 0 cm.
-
Key words:
- karst area /
- soil CO2 flux /
- carbon isotope /
- seasonal variation
-
[1] Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48(1): 7-20. [2] Chiodini G, Caliro S, Cardellini C, et al. Carbon isotopic composition of soil CO2 efflux,a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas[J].Earth & Planetary Science Letters,2008, 74(3-4): 372-379. [3] Crowther T W, Todd-brown K E O, Rowe C W, et al. Quantifying global soil carbon losses in response to warming[J]. Nature, 2016, 540(7631):104-108. [4] Nottingham A T, Whitaker J, Ostle N J, et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient[J]. Ecology Letters, 2019,22 (11): 1889-1899. [5] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J].Nature, 2008, 451: 289-292. [6] Gentine P, D'odorico P, Lintner B R, et al. Interdependence of climate, soil, and vegetation as constrained by the Budyko curve[J]. Geophysical Research Letters, 2012, 39(19): L19404. [7] WHITE W B.Carbon fluxes in Karst aquifers:Sources,sinks,and the effect of storm flow[J].Acta Carsologica,2013,42(2/3):177-186. [8] Martin J B,Brown A,Ezell J.Do carbonate karst terrains affect the global carbon cycle[J].Acta Carsologica,2013,42(2/3):187-196. [9] 袁道先. 岩溶作用与碳循环研究进展[J]. 地球科学进展, 1999, 14(5):425-432. [10] 曹建华, 杨慧, 张春来, 等. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 2018, 5(5):3-14. [11] 付玉聪, 郎赟超, 王忠军, 等. 夏季石灰土CO2昼夜动态及其影响因素[J]. 生态学杂志, 2018, 37(11):140-147. [12] 黎廷宇, 王世杰, 郑乐平. 黔中碳酸盐岩和非碳酸盐岩上覆土壤CO2 来源的对比研究[J]. 中国科学(D辑:地球科学), 2001,31(9):777-782. [13] 吴韦, 贾亚男, 蒋勇军, 等. 典型岩溶槽谷区土壤CO2浓度变化对隧道建设的响应:以重庆市中梁山岩溶槽谷为例[J]. 生态学报,2019,39(16) : 6146-6157. [14] 吴夏, 潘谋成, 曹建华, 等. 典型岩溶区土壤呼吸作用的昼夜变化特征及其影响因素[J]. 中国岩溶, 2019,38(2):157-163. [15] Yang R,Liu Z,Zeng C,et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi,Puding,SW China[J].Journal of Hydrology,2012,468-469:151-158. [16] 丁梦凯,胡晓农.一种土壤垂直剖面空气原位监测装置[P].中国专利:ZL201721861050.4,2018-07-03. [17] Bekku Y, Koizumi H, Oikawa T, et al. Examination of four methods for measuring soil respiration[J]. Applied Soil Ecology, 1997, 5(3):247-254. [18] 吴夏, 涂林玲, 杨会,等. 水样中溶解性无机碳同位素测试前处理方法对比研究[J]. 岩矿测试,2013,32(4):145-150. [19] Piao H C , Wu Y Y , Hong Y T , et al. Soil-released carbon dioxide from microbial biomass carbon in the cultivated soils of karst areas of southwest China[J]. Biology and Fertility of Soils, 2000, 31(5):422-426. [20] 丁访军, 高艳平, 吴鹏, 等. 喀斯特地区3种林型土壤呼吸及其影响因子[J]. 水土保持学报, 2010,24(3):219-223. [21] 吴夏, 朱晓燕, 张美良, 等. 岩溶表层带土壤温度和含水率对呼吸作用的影响[J]. 生态环境学报, 2013,22(12):1904-1908. [22] 王家楠, 蒋勇军, 贺秋芳,等. 中梁山岩溶槽谷区荒草地土壤微生物群落对隧道建设的响应[J]. 生态学报, 2018, 39(16):6146-6157. [23] Javed L, Hu R G, Du L J, et al.Differences in soil CO2 flux between different land use types in mid-subtropical China[J].Soil Biology and Biochemistry, 2008, 40(9): 2324-2333. [24] 曹建华, 周莉, 杨慧, 等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3):431-437. [25] Yang W, Amundson R, Trumbore S. A model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate[J].Geochimica Et Cosmochimica Acta,1994,58(1):393-399. [26] 章程, 蒋忠诚, 何师意, 等.垂直气候带岩溶动力系统特征研究:以重庆金佛山国家级自然保护区为例[J].地球学报,2006,27(5): 510-514. [27] 赵瑞一, 吕现福, 蒋建建, 等.土壤CO2及岩溶碳循环影响因素综述[J].生态学报, 2015, 35(13):4257-4264. [28] Zhang S, Li X R, Nowak R S,et al. Effect of sand-stabilizing shrubs on soil respiration in a temperate desert[J]. Plant and Soil, 2013, 367 (1-2):449-463, [29] 蒲晓婷, 林伟盛, 杨玉盛, 等. 杉木幼林土壤垂直剖面CO2通量对土壤增温的响应[J].环境科学学报,2017,37(1) :288-297. [30] Luo Y Q, Zhou X H. Soil respiration and the environment[M]. San Diego:Academic/Elsevier Press, 2006:107-113. [31] Jia B, Zhou G, Wang Y, et al. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia[J]. Journal of Arid Environments, 2006, 67(1):60-76. [32] Borken W, Xu Y J, Davidson E A, et al. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests [J]. Global Change Biology, 2010, 8(12):1205-1206. [33] 陈进, 肖以华, 陈步峰, 等. 珠江三角洲四种森林类型土壤CO2通量特征研究[J].生态环境学报,2011,20(5): 860-864. [34] Huang Y H,Hung C Y,Lin I R,et al. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation,temperature,precipitation,and litterfall[J]. Botanical Studies,2017, 58(1): 49. [35] Wang W,Peng S S,Wang T,et al.Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forests-teppe ecotone,north China[J].Soil Biology and Biochemistry,2010,42(3): 451-458. [36] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus. Series B: Chemical and Physical Meteorology, 1992, 44(2):81-99. [37] 严俊霞, 郝忠, 荆雪锴, 等. 太原晋祠地区果园土壤呼吸的年际变化及其温度敏感性[J].环境科学,2016,37(9):3625-3633. [38] Mo W H, Lee M S, Uchida M. Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan[J]. Agricultural and Forest Meteorology,2005,134(1-4):81-94. [39] Wagai R, Bryeb K R, Gower S T. Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin[J]. Soil Biology and Biochemistry, 1998, 30(12):1501-1509. [40] Rey A ,Pegoraro E ,Tedeschi V ,et al.Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology, 2010, 8(9):851-866. [41] 秦小光, 蔡炳贵, 吴金水, 等. 土壤温室气体昼夜变化及其环境影响因素研究[J]. 第四纪研究, 2005, 25(3):376-388. [42] Lin G H, Ehleringer J R. Carbon isotopic fractionation does not occur during dark respiration in C3 and C4[J]. Plant Physiology, 1997, 114: 391-394. [43] Klumpp K, Sch?ufele R, L?tscher M,et al.C-isotope composition of CO2 respired by shoots and roots:fractionation during dark respiration[J].Plant Cell&Environment,2010,28(2):241-250. [44] 张林, 孙向阳, 高程达, 等. 荒漠草原土壤次生碳酸盐形成和周转过程中固存CO2的研究[J].土壤学报,2011,48(3):576-586.
点击查看大图
计量
- 文章访问数: 1340
- HTML浏览量: 613
- PDF下载量: 72
- 被引次数: 0