• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淡水碳酸盐湖泊中CaCO3—CO32-—HCO3-—CO2化学平衡对CO2的缓冲作用——以贵州百花湖为例

王晤岩 李清光

王晤岩, 李清光. 淡水碳酸盐湖泊中CaCO3—CO32-—HCO3-—CO2化学平衡对CO2的缓冲作用——以贵州百花湖为例[J]. 中国岩溶, 2021, 40(4): 572-579.
引用本文: 王晤岩, 李清光. 淡水碳酸盐湖泊中CaCO3—CO32-—HCO3-—CO2化学平衡对CO2的缓冲作用——以贵州百花湖为例[J]. 中国岩溶, 2021, 40(4): 572-579.
WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. CARSOLOGICA SINICA, 2021, 40(4): 572-579.
Citation: WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. CARSOLOGICA SINICA, 2021, 40(4): 572-579.

淡水碳酸盐湖泊中CaCO3—CO32-—HCO3-—CO2化学平衡对CO2的缓冲作用——以贵州百花湖为例

基金项目: 国家自然科学基金地区项目“喀斯特中高硫煤矿区矿井水酸化去气动力学过程及CO2排放规模研究”(41867050);贵州省基础研究计划“基于一级反应动力学的矿井水酸化去气过程及其碳排放效应研究”(黔科合基础[2019]1096)

Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou

  • 摘要: 水体吸收的CO2转变为HCO3-,构成了碳酸盐水化学系统对CO2气体的缓冲,通常用Revelle因子(R)表征。陆地淡水系统释放的CO2是全球碳循环的重要组成部分,一方面,湖泊水体释放的CO2是来源于流域碳酸盐风化产物的输入,另一方面,碳酸盐的缓冲作用也是调节内陆水体CO2释放的重要因素,这两个结论看似是矛盾的。为了揭示碳酸盐循环对水体CO2的影响与缓冲机制,本研究选取一个碳酸盐岩地区的季节性分层湖泊(百花湖),分析Revelle因子变化,并与非碳酸盐湖泊进行比较。结果发现,碳酸盐岩湖泊Revell因子平均为20.1±8.1(8.0~50.0),大于表层海水的10.0(8.0~15.0),也远大于非碳酸盐地区湖泊的3.9±3.9,较高的Revelle因子意味着对CO2的缓冲能力更弱。Revelle因子最大值46.4出现在夏季分层期的中部斜温层,对应的无机碳浓度为2.1 mmol?L-1、pH为8.38、总无机碳与碱度比接近1.0、CO2/CO32-等于1.0。实际观测与理论分析结果完全吻合,表明碳酸盐化学平衡是控制湖泊Revelle因子变化的主要因素。低pH的非碳酸盐岩系统可以溶解碳酸盐矿物,使pH升高,碱度增加,导致Revelle因子升高,在碳酸盐溶解达到平衡时Revelle因子升至最大。其后,无论是光合作用导致的碳酸盐沉淀还是呼吸作用导致的碳酸盐溶解,Revelle因子都会降低,新陈代谢导致碳酸盐系统的CO2缓冲能力增强。

     

  • [1] Regnier P, Friedlingstein P, Ciais P, et al . Anthropogenic perturbation of the carbon fluxes from land to ocean [J]. Nature geoscience 2013, 6:597-607
    [2] Bianucci L, Long W, Khangaonkar T, et al. Sensitivity of the regional ocean acidification and carbonate system in Puget Sound to ocean and freshwater inputs [J]. Elem Sci Anth, 2018, 6(1): 22.
    [3] Egleston E S, Sabine C L, Morel F M M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity [J]. Global Biogeochem. Cycles, 2010, 24: GB1002.
    [4] Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades [J]. Tellus, 1957,9(1):18-27
    [5] Broecker W S, Takahashi T, Simpson H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget [J]. Science, 1979, 206: 409-418.
    [6] Sundquist E T, Plummer L N, Wigley T M L. Carbon dioxide in the ocean surface: The homogeneous buffer factor [J]. Science, 1979, 204(4398):1203-1205.
    [7] Hauck J, V?ker C. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor [J]. Geophys. Res. Lett., 2015, 42: 1459-1464.
    [8] Howard J R, Skirrow G, House W A, et al. Major ion and carbonate system chemistry of a navigable freshwater canal [J]. Freshwater Biology, 1984, 14(5): 515-532.
    [9] Stets E G. Butman D. McDonald C P. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers [J]. Global Biogeochem. Cycles 2017, 31, 663-677.
    [10] Duvert C, Bossa M. Tyler K J,et al. Groundwater‐derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers [J]. J. Geophy. Res. Biogeo. 2019, 124: 312-327.
    [11] Zhang T, Li J, Pu J, et al. Carbon dioxide exchanges and their controlling factors in Guijiang River, SW China [J]. Journal of Hydrology, 2019, 578: 124073.
    [12] Cole J J, Caraco N F, Kling G W, et al. Carbon dioxide supersaturation in the surface waters of lakes [J]. Science, 1994, 265(5178):1568-1570.
    [13] Tranvik L, Downing J A, Cotner J B, et al., Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnol. Oceanogr. 2009, 54 (6, part 2):2298-2314.
    [14] Marce R, Obrador B, Morgui J-A, et al. Carbonate weathering as a driver of CO2 supersaturation in lakes[J]. Nature geoscience, 2015, 8:107-111.
    [15] McDonald C P, Stets E G, Striegl R G, et al. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States [J]. Global Biogeochem. Cycles, 2013, 27:285–295, doi:10.1002/gbc.20032.
    [16] Weyhenmeyer G A, Kosten S, Wallin S K, et al. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs[J]. Nautre geoscience, 2015, 8:933-931.
    [17] Müller B, Meyer J S, G?chter R. Alkalinity regulation in calcium carbonate-buffered lakes[J]. Limnol. Oceanogr. 2016, 61:341-352.
    [18] Raymond P A, Cole J J. Increase in the export of alkalinity from north America’s largest river[J], Science, 2003, 301: 88-91,DOI: 10.1126/science.1083788.
    [19] 章程,蒋忠诚,Chris G,等.岩溶IGCP国际合作30年与岩溶关键带研究展望[J].中国岩溶,2019,38(03):301-306.
    [20] 吴泽燕,罗为群,蒋忠诚,等.土壤改良对土壤水水化学及碳酸盐岩溶蚀的CO2净消耗量的影响[J].中国岩溶,2019,(1):60-69.
    [21] Huang X, Hu J, Li C, et al. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, P.R. China [J]. International Journal of Environmental Health Research, 2009, 19(6): 405-419.
    [22] 黎文,吴丰昌,王静,等. 河流-湖泊系统中溶解有机质的示踪及迁移[J].环境科学研究,2012,25(2):133-139.
    [23] 李小峰,李秋华,秦好丽,等. 百花湖消落带常见植物氮磷钾营养元素含量分布特征研究[J].环境科学学报,2013,33(4):1089-1097.
    [24] 沈威,胡继伟,谢伟芳,等.百花湖水体氮的空间分布研究[J].中国岩溶,2012,31(1):74-81.
    [25] 张维,红枫湖、百花湖环境特征及富营养化[M]. 贵阳,贵州科技出版社,1999.
    [26] Tao F X. 2017. Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters[J]. Acta Geochimica, 2017,36: 658-666.
    [27] 周长松,邹胜章,朱丹尼,等.岩溶地下水样品Ca2+、HCO〖_3^-〗野外测试值与实验室测试值对比研究[J].中国岩溶,2017,36(5):684-690.
    [28] Jonsson A, Karlsson J, Jansson M. Sources of Carbon Dioxide Supersaturation in Clearwater and Humic Lakes in Northern Swede[J].Ecosystems, 2003,6:224-235,DOI: 10.1007/s10021-002-0200-y.
    [29] Wallin M, Buffam I, ?quist M, et al. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: concentrations and downstream fluxes [J]. J. Geophy. Res., 2010, 115: G02014.
    [30] Butler P J, Woakes A J. Control of heart rate by carotid body chemoreceptors during diving in tufted ducks [J]. J Appl Physiol Respir Environ Exerc Physiol. 1982, 53 (6):1405-1410.
    [31] 吕迎春,刘丛强,王仕禄,等. 贵州喀斯特水库红枫湖、百花湖p(CO2)季节变化研究[J]. 环境科学,2007(12):2674-2681.
    [32] 章程.岩溶区河流水化学昼夜变化与生物地球化学过程[J].中国岩溶,2015,34(1):1-8.
    [33] 李瑞,于奭,孙平安,等.贵州茂兰板寨水域水生植物δ13C特征及光合作用固定HCO〖_3^-〗碳量估算[J].中国岩溶,2015,34(1):9-8.
    [34] Zeebe RE. Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M].Elsevier Oceanography Series 65,Amsterdam, 2001,(Paperback) ISBN: 0444509461
    [35] 张陶,李建鸿,蒲俊兵,等.小球藻对岩溶水体Ca2+、HCO〖_3^-〗利用效率实验研究[J].中国岩溶,2018,37(1):81-90.
    [36] Talling J F. pH, the CO2 System and Freshwater Science[J]. Freshwater Reviews, 2010, 3(2):133-146.
  • 加载中
计量
  • 文章访问数:  1492
  • HTML浏览量:  554
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 发布日期:  2021-08-25

目录

    /

    返回文章
    返回