淡水碳酸盐湖泊中CaCO3—CO32-—HCO3-—CO2化学平衡对CO2的缓冲作用——以贵州百花湖为例
Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou
-
摘要: 水体吸收的CO2转变为HCO3-,构成了碳酸盐水化学系统对CO2气体的缓冲,通常用Revelle因子(R)表征。陆地淡水系统释放的CO2是全球碳循环的重要组成部分,一方面,湖泊水体释放的CO2是来源于流域碳酸盐风化产物的输入,另一方面,碳酸盐的缓冲作用也是调节内陆水体CO2释放的重要因素,这两个结论看似是矛盾的。为了揭示碳酸盐循环对水体CO2的影响与缓冲机制,本研究选取一个碳酸盐岩地区的季节性分层湖泊(百花湖),分析Revelle因子变化,并与非碳酸盐湖泊进行比较。结果发现,碳酸盐岩湖泊Revell因子平均为20.1±8.1(8.0~50.0),大于表层海水的10.0(8.0~15.0),也远大于非碳酸盐地区湖泊的3.9±3.9,较高的Revelle因子意味着对CO2的缓冲能力更弱。Revelle因子最大值46.4出现在夏季分层期的中部斜温层,对应的无机碳浓度为2.1 mmol?L-1、pH为8.38、总无机碳与碱度比接近1.0、CO2/CO32-等于1.0。实际观测与理论分析结果完全吻合,表明碳酸盐化学平衡是控制湖泊Revelle因子变化的主要因素。低pH的非碳酸盐岩系统可以溶解碳酸盐矿物,使pH升高,碱度增加,导致Revelle因子升高,在碳酸盐溶解达到平衡时Revelle因子升至最大。其后,无论是光合作用导致的碳酸盐沉淀还是呼吸作用导致的碳酸盐溶解,Revelle因子都会降低,新陈代谢导致碳酸盐系统的CO2缓冲能力增强。Abstract: CO2 can be absorbed by water and transformed into HCO3-. This process is well known as the buffering of carbonate system,which can be quantified using the Revelle factor(R). CO2 released by terrestrial freshwater systems is an important component of the global carbon cycle. On the one hand,CO2 released by lake water is from the input of carbonate weathering products in the basin;on the other hand,the buffering effect of carbonate is an important factor regulating CO2 release of inland water. These two conclusions seem to be contradictory. In order to reveal the effect of carbonate cycling on CO2 in freshwater lakes,in this study, we investigated the variation of Revelle factor R in a stratified lake(Baihua lake)located in carbonate area,and compared to the data obtained from lakes from non-karst areas. The results show that the average of Revelle factor in the lake water is 20.1± 8.1(8.0-50.0),which is larger than 10.0(8.0-15.0)in the surface sea water and also much larger than 3.9±3.9 in lakes in non-karst areas. A higher Revelle factor means a weaker CO2 buffering capacity. The maximum value of R,46.4,occurred in the thermocline in summer,where corresponding variations of inorganic carbon concentration(2.1 mmol?L-1),ratio of total inorganic carbon to alkalinity(1.0),ratio of CO2/CO3(1.0)and pH (8.38)are well coincident with the theoretical values. This consistency indicates that chemical equilibrium of carbonate is primary factor controlling Revelle factor of lake water. Lake waters with lower pH in non-karst areas could dissolve carbonate and then raise pH and alkalinity,thus elevate the Revelle factor to the maximum value while dissolution of carbonate reaches an equilibrium. Thereafter,Revelle factor will decrease and the buffering capability resulted by the metabolism increase,regardless of carbonate precipitation due to photosynthesis or carbonate dissolution during respiration.
-
Key words:
- freshwater lakes /
- chemical equilibrium of carbonate /
- CO2 /
- buffering mechanism /
- Revelle factor
-
[1] Regnier P, Friedlingstein P, Ciais P, et al . Anthropogenic perturbation of the carbon fluxes from land to ocean [J]. Nature geoscience 2013, 6:597-607 [2] Bianucci L, Long W, Khangaonkar T, et al. Sensitivity of the regional ocean acidification and carbonate system in Puget Sound to ocean and freshwater inputs [J]. Elem Sci Anth, 2018, 6(1): 22. [3] Egleston E S, Sabine C L, Morel F M M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity [J]. Global Biogeochem. Cycles, 2010, 24: GB1002. [4] Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades [J]. Tellus, 1957,9(1):18-27 [5] Broecker W S, Takahashi T, Simpson H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget [J]. Science, 1979, 206: 409-418. [6] Sundquist E T, Plummer L N, Wigley T M L. Carbon dioxide in the ocean surface: The homogeneous buffer factor [J]. Science, 1979, 204(4398):1203-1205. [7] Hauck J, V?ker C. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor [J]. Geophys. Res. Lett., 2015, 42: 1459-1464. [8] Howard J R, Skirrow G, House W A, et al. Major ion and carbonate system chemistry of a navigable freshwater canal [J]. Freshwater Biology, 1984, 14(5): 515-532. [9] Stets E G. Butman D. McDonald C P. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers [J]. Global Biogeochem. Cycles 2017, 31, 663-677. [10] Duvert C, Bossa M. Tyler K J,et al. Groundwater‐derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers [J]. J. Geophy. Res. Biogeo. 2019, 124: 312-327. [11] Zhang T, Li J, Pu J, et al. Carbon dioxide exchanges and their controlling factors in Guijiang River, SW China [J]. Journal of Hydrology, 2019, 578: 124073. [12] Cole J J, Caraco N F, Kling G W, et al. Carbon dioxide supersaturation in the surface waters of lakes [J]. Science, 1994, 265(5178):1568-1570. [13] Tranvik L, Downing J A, Cotner J B, et al., Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnol. Oceanogr. 2009, 54 (6, part 2):2298-2314. [14] Marce R, Obrador B, Morgui J-A, et al. Carbonate weathering as a driver of CO2 supersaturation in lakes[J]. Nature geoscience, 2015, 8:107-111. [15] McDonald C P, Stets E G, Striegl R G, et al. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States [J]. Global Biogeochem. Cycles, 2013, 27:285–295, doi:10.1002/gbc.20032. [16] Weyhenmeyer G A, Kosten S, Wallin S K, et al. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs[J]. Nautre geoscience, 2015, 8:933-931. [17] Müller B, Meyer J S, G?chter R. Alkalinity regulation in calcium carbonate-buffered lakes[J]. Limnol. Oceanogr. 2016, 61:341-352. [18] Raymond P A, Cole J J. Increase in the export of alkalinity from north America’s largest river[J], Science, 2003, 301: 88-91,DOI: 10.1126/science.1083788. [19] 章程,蒋忠诚,Chris G,等.岩溶IGCP国际合作30年与岩溶关键带研究展望[J].中国岩溶,2019,38(03):301-306. [20] 吴泽燕,罗为群,蒋忠诚,等.土壤改良对土壤水水化学及碳酸盐岩溶蚀的CO2净消耗量的影响[J].中国岩溶,2019,(1):60-69. [21] Huang X, Hu J, Li C, et al. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, P.R. China [J]. International Journal of Environmental Health Research, 2009, 19(6): 405-419. [22] 黎文,吴丰昌,王静,等. 河流-湖泊系统中溶解有机质的示踪及迁移[J].环境科学研究,2012,25(2):133-139. [23] 李小峰,李秋华,秦好丽,等. 百花湖消落带常见植物氮磷钾营养元素含量分布特征研究[J].环境科学学报,2013,33(4):1089-1097. [24] 沈威,胡继伟,谢伟芳,等.百花湖水体氮的空间分布研究[J].中国岩溶,2012,31(1):74-81. [25] 张维,红枫湖、百花湖环境特征及富营养化[M]. 贵阳,贵州科技出版社,1999. [26] Tao F X. 2017. Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters[J]. Acta Geochimica, 2017,36: 658-666. [27] 周长松,邹胜章,朱丹尼,等.岩溶地下水样品Ca2+、HCO〖_3^-〗野外测试值与实验室测试值对比研究[J].中国岩溶,2017,36(5):684-690. [28] Jonsson A, Karlsson J, Jansson M. Sources of Carbon Dioxide Supersaturation in Clearwater and Humic Lakes in Northern Swede[J].Ecosystems, 2003,6:224-235,DOI: 10.1007/s10021-002-0200-y. [29] Wallin M, Buffam I, ?quist M, et al. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: concentrations and downstream fluxes [J]. J. Geophy. Res., 2010, 115: G02014. [30] Butler P J, Woakes A J. Control of heart rate by carotid body chemoreceptors during diving in tufted ducks [J]. J Appl Physiol Respir Environ Exerc Physiol. 1982, 53 (6):1405-1410. [31] 吕迎春,刘丛强,王仕禄,等. 贵州喀斯特水库红枫湖、百花湖p(CO2)季节变化研究[J]. 环境科学,2007(12):2674-2681. [32] 章程.岩溶区河流水化学昼夜变化与生物地球化学过程[J].中国岩溶,2015,34(1):1-8. [33] 李瑞,于奭,孙平安,等.贵州茂兰板寨水域水生植物δ13C特征及光合作用固定HCO〖_3^-〗碳量估算[J].中国岩溶,2015,34(1):9-8. [34] Zeebe RE. Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M].Elsevier Oceanography Series 65,Amsterdam, 2001,(Paperback) ISBN: 0444509461 [35] 张陶,李建鸿,蒲俊兵,等.小球藻对岩溶水体Ca2+、HCO〖_3^-〗利用效率实验研究[J].中国岩溶,2018,37(1):81-90. [36] Talling J F. pH, the CO2 System and Freshwater Science[J]. Freshwater Reviews, 2010, 3(2):133-146.
点击查看大图
计量
- 文章访问数: 1492
- HTML浏览量: 554
- PDF下载量: 88
- 被引次数: 0