岩溶洞穴滴水CO2季节变化特征及来源分析——以大风洞为例
Seasonal variations and sources of dripping CO2 in karst caves: A case study of the Dafeng cave, Guizhou Province
-
摘要: 为探究白云岩洞穴滴水中CO2来源及变化特征,以贵州省绥阳双河洞洞穴系统中的大风洞为研究对象,对洞穴空气CO2浓度(pCO2(c))、洞穴上覆土壤CO2浓度(pCO2(soil))、洞穴滴水CO2分压(pCO2(w))、以及洞穴滴水水化学环境进行了为期15个月(2016年1月-2017年3月)的监测、采样和室内实验分析,运用统计分析方法对各监测指标进行主成分分析。结果表明:(1)pCO2(w)、pCO2(c)具有明显的季节性变化特征,表现为雨季>旱季。pCO2(soil)受降雨、洞穴通风效应的影响,季节性波动较大,是洞穴pCO2(w)的重要来源;(2)深层岩溶作用中渗透水在流经洞穴上覆表层岩溶带发生的水-岩相互作用及其产生的水化学环境,特别是变化,是影响pCO2(w)的主要因素之一,对pCO2(w)具有重要贡献;(3)运用主成分分析法(PCA)得出各因素对洞穴滴水的相对方差贡献率依次为:HCO3- >pCO2(s)>Soil 1#>pCO2(w)>Soil 2#。各因子对pCO2(w)的贡献率依次为:地表深层岩溶作用>洞穴上覆土壤空气环境>洞穴空气环境;(4)pCO2(w)来源概念模型表明,雨季时,降雨量大,土壤水下渗快,地下水得到充分补充,但停滞时间较短,在渗流带中与围岩反应不充分,PCP过程较弱,对pCO2(w)影响较大;旱季则相反。研究结果对洞穴石笋、石钟乳沉积物的保护具有一定意义,对洞穴旅游开发、管理及岩溶碳循环研究具有重要意义。
-
关键词:
- 洞穴滴水pCO2(w) /
- 主成分分析法(PCA) /
- 季节变化 /
- 来源 /
- 大风洞
Abstract: The purpose of this work was to clarify the characteristics of CO2 changes and its sources in the dripping water of the Dolomite caves. Taking the Dafeng cave,part of the Shuanghe cave system,as the research object, monitoring, sampling and laboratory analysis were conducted to cave air CO2 concentration (pCO2(c)),soil CO2 concentration (pCO2(soil)),cave drip CO2 partial pressure(pCO2(w)),and cave dripping hydrochemical environment for 15 months(January 2016 to March 2017). Then principal component analysis was performed on each monitoring index using the statistical analysis method. Results show that,(1)pCO2(w) and pCO2(c)have obvious seasonal variations,which are characterized by summer-autumn> winter-spring. pCO2(soil)is affected by rainfall and cave ventilation,which is the main source of pCO2(w) in caves.(2)Water-rock interactions of osmotic water flowing through caves over the karst zone,especially the hydrochemical environment and its HCO3- change are one of the main factors affecting pCO2(w), an important contribution to the pCO2(w).(3)Using principal component analysis(PCA),the contribution of each factor to cave drip is as follows,HCO3->pCO2(s)>Soil 1#>pCO2(w)>Soil 2#. The contribution comparison of each factor to pCO2(w) is as follows:deep karst on the surface > soil air environment on the cave > cave air environment.(4)The conceptual model on the source of pCO2(w)suggests that during the rainy season,the rainfall is large,the soil is infiltrated quickly,the groundwater is fully replenished,but the stagnation time is short,the reaction with the surrounding rock is insufficient in the seepage zone,and the PCP process is weak, posing a big influence on pCO2(w),while the dry season is the opposite. These research results have certain theoretical and practical significance for the protection of cave stalagmites and stalactite sediments. It is of great significance to the development and utilization of cave tourism and the study of karst carbon cycle. -
[1] Song L H,Wang J, Liang F Y,et al.Effect of human and natural factors on the environment of show caves[J].Carsologica Sinica, 2004,23(2):91-99. [2] 王翱宇, 蒲俊兵, 沈立成, 等. 重庆雪玉洞CO2浓度变化的自然与人为因素探讨[J]. 热带地理,2010, 30(3):272-277. [3] Pu J,Wang A,Yin J,et al.pCO2,variations of cave air and cave water in a subtropical cave,SW China[J].Carbonates & Evaporites,2017:1-11. [4] 田衷珲,周忠发,张绍云,等. 喀斯特洞穴CO2时空变化特征及其控制因素分析[J].科学技术与工程,2017,17(33):43-51. [5] 班凤梅,蔡炳贵.北京石花洞空气环境主要因子季节性变化特征研究[J].中国岩溶,2011,30(2):132-137. [6] 王静,宋林华,向昌国,等.不同植被类型覆盖下土壤CO2浓度对洞穴景观的影响[J].地理研究,2004,23(1):71-77. [7] 蔡炳贵, 沈凛梅, 郑伟, 等. 本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征[J]. 中国岩溶, 2009,28(4):348-354. [8] Troester J W , White W B . Seasonal Fluctuations in the Carbon Dioxide Partial Pressure in a Cave Atmosphere[J]. Water Resources Research, 1984, 20(1):153-156. [9] Sp?tl C,Fairchild I J,Tooth A F. Cave air control on dripwater geochemistry,Obir Caves (Austria):implications forspeleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta,2005, 69(10):2451-2468. [10] 曹明达,周忠发,张结,等.白云岩洞穴系统中水-气CO2分压对洞穴水水文化学过程的影响:以贵州双河洞为例[J].环境科学与技术,2017,40(3):54-60. [11] 曹明达,周忠发,张结,等.白云岩喀斯特洞穴水理化性质特征及其环境指示研究:以绥阳双河洞为例[J].地球化学, 2017,46(1):87-97. [12] 张结, 周忠发, 汪炎林, 等. 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J]. 地理学报, 2018,73(9):1687-1701. [13] 殷超, 周忠发, 衷珲, 等. 土壤CO2与喀斯特洞穴CO2季节变化响应分析[J]. 水土保持学报,2017,31(4):304-310. [14] Milanolo S, Gabrov?ek F. Analysis of Carbon Dioxide Variations in the Atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina[J]. Boundary-Layer Meteorology, 2009, 131(3):479-493. [15] Faimon J, Li?binská M, Zají?ek P, et al. Partial pressures of CO2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst, Czech Republic[J]. Acta Carsologica, 2011, 41(1):47-57. [16] Breecker D O,Payne A E,Quade J,et al.The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J].Geochimica Et Cosmochimica Acta,2012,96(11):230-246. [17] Baker A,Genty D.Environmental pressures on conserving cave speleothems: effects of changing surface land use and increased cave tourism[J].Journal of Environmental Management,1998,53(2):165-175. [18] 韦跃龙,罗书文,陈伟海,等.贵州绥阳地质公园白云岩喀斯特景观特征及其形成演化分析[J].地球学报, 2018,39(3):365-383. [19] 李坡,贺卫,钱治,等.双河洞地质公园研究[M].贵阳:贵州人民出版社,2008:58-101. [20] Milanolo S, Gabrov?ek F. Estimation of carbon dioxide flux degassing from percolating waters in a karst cave: Case study from Bijambare cave,Bosnia and Herzegovina[J].Chemie der Erde-Geochemistry-Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology,2015,75(4):465-474. [21] 周福莉, 李廷勇, 陈虹利, 等. 重庆芙蓉洞洞穴水水文地球化学指标的时空变化[J].水土保持学报, 2012, 26(3):253-259. [22] 蔡小薇, 赵景波. 西安长延堡夏季土壤CO2释放量的变化及影响因素[J]. 干旱区地理, 2005, 28(3): 316-319. [23] Krajnc, Ferlan, Ogrinc. Soil CO2 sources above a subterranean cave-Pisani rov (Postojna Cave, Slovenia)[J]. Joural of Soil&Sediments , 2017,17(7):1883-1892. [24] 张结,周忠发,潘艳喜,等.织金洞土壤渗透水-洞穴滴水元素的时空变化特征[J].水土保持研究,2017, 24(4):355-361. [25] 张结, 周忠发, 潘艳喜, 等. 贵州织金洞CO2浓度不同时间尺度变化及其影响因子分析[J]. 生态与农村环境学报,2017, 33(11):1013-1022. [26] 曹建华, 蒋忠诚, 袁道先, 等. 岩溶动力系统与全球变化研究进展[J]. 中国地质,2017,44(5):874-900. [27] 钱会, 刘国东. 不同pCO2条件下水溶液的pH值及溶液中化学组分平衡分布的计算[J]. 中国岩溶,1994,13(2):133-140. [28] Pracny P, Faimon J, V?iansky D, et al. Evolution of Mg/Ca Ratios During Limestone Dissolution Under Epikarstic Conditions[J]. Aquatic Geochemistry, 2017, 23(2):119-139. [29] Stumm W, Morgan J J. Aquatic chemistry:chemical equilibria and rates in natural waters[J]. Cram101 Textbook Outlines to Accompany,1995,179(11):A277. [30] Sander R. Compilation of Henry's law constants (version 4.0) for water as solvent[J]. Atmospheric Chemistry & Physics,2015,15(8):4399-4981. [31] 陈桥, 雒昆利, 董明星, 等. 洞穴水Ca2+,Mg2+含量特征及其对次生化学沉积物发育影响:以重庆武隆芙蓉洞为例[J]. 水土保持学报,2006,20(1):121-125. [32] 曹明达, 周忠发, 张强, 等. 岩溶洞穴水理化性质特征及其环境意义:以贵州织金洞为例[J].中国岩溶, 2016, 35(3):314-321,348. [33] 李甜甜,季宏兵,江用彬,等. 赣江上游河流水化学的影响因素及DIC来源[J]. 地理学报,2007,62(7):764-775. [34] Dalai T K, Krishnaswami S, Sarin M. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering,its temperature dependence and CO2,consumption in the Himalaya[J]. Geochimica Et Cosmochimica Acta,2002,66(19):3397-3416. [35] 李梦婕,江韬,何仁江,等.岩石风化对三峡库区农业小流域水化学特征的影响[J]. 中国环境科学,2012,32(8):1495-1501. [36] 张结,周忠发,曹明达,等.双河洞小流域主要离子化学特征及其来源分析[J].水土保持学报,2017,31(2):327-332. [37] 罗维均,王世杰,刘秀明.喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J].地球科学进展,2014, 29(12):1333-1340. [38] Mattey D P, Atkinson T C, Barker J A, et al. Carbon dioxide, ground air and carbon cycling in Gibraltar karst[J]. Geochimica et Cosmochimica Acta, 2016, 184: 88-113.
点击查看大图
计量
- 文章访问数: 1421
- HTML浏览量: 595
- PDF下载量: 138
- 被引次数: 0