都柳江上游沿岸喀斯特地区土壤重金属污染特征及风险评价
Pollution characteristics and risk assessment of heavy metals in soils along the upper reaches of the Duliu river
-
摘要: 采集都柳江上游沿岸喀斯特地区62个土壤样品,利用地累积指数法、潜在生态风险指数法、克里金插值方法综合研究Sb、Cd、As、Cr和Pb五种重金属元素累积污染特征和潜在生态风险。结果表明,研究区土壤中Sb和Cd元素平均含量分别超过贵州省土壤环境背景值4.085倍和1.876倍。空间分布上,Sb元素严重污染面积占研究区总面积37.87%,主要受区内赋矿层位望城坡组、尧梭组和鸡窝寨组的影响。而Cd元素轻度累积污染面积为59.76%,其与碳酸盐岩分布密切相关。研究区土壤重金属污染潜在生态风险属于低风险等级,但是Cd和Sb元素单项污染潜在生态风险概率较大,Cd污染最高概率风险地层主要是石牛栏组和邦寨组,而Sb污染最高概率风险地层为邦寨组、鸡窝寨组和独山组。因此,研究区应重点防控石牛栏组、邦寨组、鸡窝寨组和独山组土壤Cd与Sb污染的潜在生态风险。Abstract: Sixty-two soil samples were collected from the karst area along the upper reaches of the Duliujiang river,Guizhou Province. The purpose was to study the cumulative pollution characteristics and spatial pattern of potential ecological risks of five heavy metals,Sb,Cd,As,Cr and Pb by comprehensive utilization of the geo-accumulation index,potential ecological risk index and Kriging interpolation methods. The results show that the average contents of Sb and Cd in the soil of the study area exceed the environmental background values of Guizhou Province by 4.085 times and 1.876 times,respectively.In terms of spatial distribution,the local serious pollution area of Sb element accounts for 37.87% of the total,which is mainly controlled by the distribution of Wangchengpo formation,Yaosuo formation and Jiwozhai formation,the ore-bearing strata in the area.However,the proportion of slightly accumulated pollution area of Cd element is 59.76%,and the distribution of carbonate rocks is the main influencing factor for its general enrichment.The potential ecological risk in the study area is of a low level,but the probability of single potential ecological risk with medium or above Cd and Sb is relatively high. The highest probability risk group of Cd is mainly distributed in the strata of Shiniulan formation and Bangzhai formation,while that of Sb is distributed in the strata of Bangzhai formation,Jiwozhai formation and Dushan formation.Therefore,special attention should be paid to the prevention and control of potential ecological risks of soil Cd and Sb in the strata of Shiniulan formation,Bangzhai formation,Jiwozhai formation and Dushan formation in karst areas.
-
[1] Celia Y. Chen,Richard S. Stemberger ,Bjorn Klaue , et al.Accumulation of heavy metals in food web components across a gradient of lakes[J].Limnology and Oceanography, 2000, 45(7):1525-1536. [2] 黄亮,李伟,吴莹,等.长江中游若干湖泊中水生植物体内重金属分布[J].环境科学研究,2002,15(6):1-4. [3] 杨奇勇,谢运球,罗为群,等. 基于地统计学的土壤重金属分布与污染风险评价[J]. 农业机械学报, 2017, 48(12):248-254. [4] Osim Enya , Chuxia Lin, Junhao Qin. Heavy metal contamination status in soil-plant system in the Upper Mersey Estuarine Floodplain, Northwest England[J].Marine Pollution Bulletin,2019,146:292-304. [5] Annika M. Weber ,Tinashe Mawodza ,Binoy Sarkar ,et al.Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England[J].Ecotoxicology and Environmental Safety,2019,170:156-165. [6] Rachel R Hurley ,Rachel R Hurley ,Rachel R Hurley .Metal contamination of bed sediments in the Irwell and Upper Mersey catchments, northwest England: exploring the legacy of industry and urban growth[J].Journal of Soils and Sediments,2017,17(11):2648-2665. [7] Jung Min Ahn,Shin Kim,Yong-Seok Kim.Selection of priority management of rivers by assessing heavy metal pollution and ecological risk of surface sediments[J].Environ Geochem Health,2020,42(6):1657-1669. [8] In-Gyu Cho ,Min-Kyu Park ,Hye-Kyung Cho , et al.Characteristics of metal contamination in paddy soils from three industrial cities in South Korea[J].Environ Geochem Health,2019,41(5):1895-1907. [9] Jin Young Choi,Hyeryeong Jeong ,Ki-Young Choi , et al.Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea[J].Marine Pollution Bulletin,2020,161:111724. [10] Hae Jong Yang,Hyo Jin Jeong,Ki Moon Bong, et al.Organic matter and heavy metal in river sediments of southwestern coastal Korea: Spatial distributions, pollution, and ecological risk assessment[J].Marine Pollution Bulletin,2020,159:111466. [11] Hyunuk Kim,Mina Lee,Jae?Hwang Lee, et al.Distribution and extent of heavy metal(loid) contamination in agricultural soils as affected by industrial activity[J]. Applied Biological Chemistry,2020,63(1):31. [12] Alejandro Cittadino ,Natalia Ocello ,Maria VictoriaMajul , et al.Heavy metal pollution and health risk assessment of soilsfrom open dumps in the Metropolitan Area of BuenosAires, Argentina[J].Environmental Monitoring And Assessment,2020,192(5):291. [13] Ana L. Oliva ,Noelia S. La Colla,Andre ′s H. Arias,et al.First records of polycyclic aromatic hydrocarbons and metals in sediments from a shallow lake in thePampean–Patagonian region (Argentina)[J]. Marine and Freshwater Research,2019,70(10):1378-1388. [14] Luciana Regaldo ,María F. Gutierrez,Ulises Reno,et al.Water and sediment quality assessment in the Colastiné-Corralitostream system (Santa Fe, Argentina): impact of industry and agricultureon aquatic ecosystems[J].Environmental Science and Pollution Research,2018,25(7):6951-6968. [15] Yanina L. Idaszkin ,María del Pilar Alvarez,Eleonora Carol .Geochemical processes controlling the distribution and concentration ofmetals in soils from a Patagonian (Argentina) salt marsh affected bymining residues[J].Science of the Total Environment,2017,596:230-235. [16] Siham Bouzekri ,Hamza El Fadili,Moulay Laarabi El Hachimi, et al.Assessment of trace metalscontamination in sediment and surface water of quarry lakes from the abandoned Pb mineZaida,High Moulouya?Morocco[J].EnvironmentDevelopment and Sustainability,2020,22(7):7013-7031. [17] Hongling Zhang,Tony R. Walker ,Emily Davis , et al.Ecological risk assessment of metals in small craft harbour sediments in Nova Scotia, Canada[J].Marine Pollution Bulletin,2019,146:466-475. [18] Léo Chassiot ,Pierre Francus ,Arnaud De Coninck, et al.Spatial and temporal patterns of metallic pollution in Québec City,Canada: Sources and hazard assessment from reservoir sediment records[J].Science of the Total Environment,2019,673:136-147. [19] Varun Paul ,M.S. Sankar ,Shannon Vattikuti , et al.Pollution assessment and land use land cover influence on trace metaldistribution in sediments from five aquatic systems in southern USA[J].Chemosphere,2021,263:128243. [20] Bohdan K?íbek , Bohdan K?íbek , Vladimír Majer , et al.Soil contamination near the Kabwe Pb-Zn smelter in Zambia: Environmentalimpacts and remediation measures proposal[J].Journal of Geochemical Exploration,2019,197:159-173. [21] Faten Khelifi ,Antonio G. Caporale ,Younes Hamed , et al.Bioaccessibility of potentially toxic metals in soil, sediments and tailings from a north Africa phosphate-mining area: Insight into human health risk assessment[J].Journal of Environmental Management,2021,279:111634. [22] Mihayo S. Nkinda ,Mwemezi J. Rwiza ,Jasper N. Ijumba , et al.Quantitative assessment of metal contamination and associated pollution risk in sediments from the MaraRiver in Tanzania[J].Environmental Monitoring And Assessment,2020,192(11):721. [23] Abdelaziz Sebei , Anis Chaabani , ChirazAbdelmalek-Babbou, et al.Evaluation of pollution by heavy metals of an abandoned Pb-Zn mine in northern Tunisia using sequential fractionationand geostatistical mapping[J].Environmental Science and Pollution Research,2020,27(35):43942-43957. [24] Yasaman Jafari ,Brian G. Jones , Joanna C. Pacheco , et al.Trace element soil contamination from smelters in the Illawarra region, New South Wales, Australia[J].Environmental Earth Sciences,2020,79(15):372. [25] 罗慧,刘秀明,王世杰,等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5):1538-1544. [26] 张富贵,彭敏,王惠艳,等.基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J].环境科学,2020,41(9):4197-4209. [27] 朱恒亮,刘鸿雁,龙家寰,等.贵州省典型污染区土壤重金属的污染特征分析[J].地球与环境,2014,42(4):505-512. [28] 熊佳,韩志伟,吴攀,等. 独山锑冶炼厂周边土壤锑砷空间分布特征、污染评价及健康风险评估[J]. 环境科学学报,2020,40(2):655-664. [29] 宁增平,肖青相,蓝小龙,等.都柳江水系沉积物锑等重金属空间分布特征及生态风险[J]. 环境科学,2017,38(7):2784-2792. [30] 王晓静,王智慧,张朝晖,等.喀斯特地区贵州铝厂周边植物对金属元素的监测能力[J].环境监测管理与技术, 2017,29(1):21-24. [31] 刘松,周富强,黄凤红. 贵州六盘水农用土壤重金属含量状况及潜在生态风险评价[J].贵州农业科学, 2019,47(7):143-147. [32] Hou D Y, O’Connor D, Nathanail P,et al.Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review [J]. Environmental Pollution, 2017, 231(pt.1):1188-1200. [33] 黄馗,陈晓兵,石宏辉,等.都柳江洪水传播时间分析[J].贵州气象, 2015,39(3):58-61. [34] 郑小波,郑奕,周成霞.珠江上游都柳江流域河谷40a来气候变化特征[J]. 广西气象, 2005, 26(S1):153-154. [35] Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969,2(3):108-118. [36] 边博,周燕,张琴.太湖西岸河网沉积物中重金属污染特征及风险评价[J].环境科学, 2017, 38(4):1442-1450. [37] 宋春然,何锦林,谭红,等.贵州省农业土壤重金属污染的初步评价[J].贵州农业科学, 2005,33(2):13-16. [38] Hakanson L. An ecological risk index for aquatic pollution control:a sedimentological approach[J]. Water Research, 1980,14(8):975-1001 [39] 徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115. [40] 崔邢涛, 栾文楼, 牛彦斌,等.唐山城市土壤重金属污染及潜在生态危害评价[J].中国地质, 2011,38(5):1379-1386. [41] 代杰瑞,庞绪贵, 宋建华,等.山东淄博城市和近郊土壤元素地球化学特征及生态风险研究[J]. 中国地质, 2018,45(3): 617-627. [42] 管后春,李运怀,彭苗芝,等.黄山城市土壤重金属污染及其潜在生态风险评价[J].中国地质, 2013,40(6):1949-1958. [43] 鲍丽然,邓海,贾中民,等.重庆秀山西北部农田土壤重金属生态健康风险评价[J].中国地质,2020,47(6): 1625-1636. [44] 陈明,胡兰文,陶美霞,等.桃江河沉积物中重金属污染特征及风险评价[J]. 环境科学学报,2019, 39(5):1599-1606 [45] 孙强,薛雷,王媛媛,等.克里金参数估值法及其在参数估计分析中的应用[J]. 岩土力学,2009,30(S2):371-373. [46] 周小文,付晖,吴昌瑜.地层特性随机场插值方法应用研究[J].岩土力学, 2005,26(2):221-224. [47] 李晓军,王长虹,朱合华. Kriging插值方法在地层模型生成中的应用[J]. 岩土力学,2009, 30(1):157-162. [48] Kambhammettu B , Allena P , King J P . Application and evaluation of universal kriging for optimal contouring of groundwater levels[J]. Journal of Earth Systemscience, 2011, 120(3):413-422. [49] 贾明涛,王李管.三维变异函数的稳健统计学计算方法及其应用[J]. 中南工业大学学报, 1998, 29(5):422-424. [50] 吴蓉,周志芳.基于指示克立格方法的裂隙介质渗透性参数空间分布规律分析[J].水利学报, 2004,35(6):104-107,113. [51] Chang A C, Pan G, Page A L, et al. Developing human health-relatedchemical guidelines for reclaimed waste water and sewage sludge applications in agriculture[R]. Geneva:World Health Organization, 2002. [52] 曹宏杰,王立民,罗春雨,等.三江平原地区农田土壤中几种重金属空间分布状况[J].生态与农村环境学报,2014,30(2):155-161. [53] 王约. 独山抬升与"巴年式"锑矿成矿作用探讨[J]. 贵州地质, 1997,14(2):153-159. [54] 刘幼平. 独山锑矿区围岩蚀变基本模式及其找矿标志[J]. 贵州地质, 1993,10(2):155-162. [55] 孙斌,魏志敏,张力浩,等.地质高背景土壤重金属赋存特征及微生物群落结构差异[J].土壤学报,2021,58(5):1246-1255. [56] 周丽,杨丰,谭玉兰,等.不同海拔草地开垦对土壤重金属的影响及评价[J].环境工程, 2019,37(9):194-198. [57] 罗艳碧,黄智龙,肖宪国,等. 贵州独山锑矿田成矿元素含量及其地质意义[J]. 矿物学报, 2014, 34(2):247-253. [58] 金中国,戴塔根.贵州独山半坡锑矿田地质地球化学特征及成矿模式[J].物探与化探, 2007,31(2):129-132.
点击查看大图
计量
- 文章访问数: 1264
- HTML浏览量: 600
- PDF下载量: 128
- 被引次数: 0