贵州茂兰喀斯特地区土壤全钙含量空间估算模型与迁移分析
Spatial estimation model and migration analysis of soil total calcium content in the Maolan karst area, Guizhou Province
-
摘要: 文章在世界自然遗产地贵州荔波茂兰保护区采集土壤全钙数据,分析采用地理加权回归(GWR)方法进行空间分析的有效性,筛选识别影响土壤全钙空间分布的主要因子,建立喀斯特地区土壤全钙含量空间分布计算模型,获取研究土壤全钙空间分布基础数据。通过土壤流失方程(USLE)计算土壤侵蚀状况,对比分析土壤全钙与土壤侵蚀空间关联,揭示土壤全钙的空间迁移规律。结果表明:(1)在岩性一致条件下,相对高差和坡度是影响土壤全钙空间分布的主导因子;(2)GWR模型的预测精度优于全局回归的(OLS),相关系数分别是0.41和0.39;(3)通过土壤全钙含量空间估算模型,计算得到研究区土壤全钙空间分布特征,土壤全钙为0 ~37.68 gkg-1。研究结论说明,在湿润气候的喀斯特地区,尽管植被覆盖度大,但土壤全钙空间分布仍然深受成土母质影响,喀斯特峰林土壤侵蚀强度大,土壤全钙含量高,物质迁移以流失为主,峰丛洼地土壤侵蚀强度小,土壤全钙含量低,物质迁移以淋溶流失为主。Abstract: Calcium is an important element in the karst environment. In this work,we collected soil total calcium data in Libo-Maolan Nature Reserve in Guizhou,a world natural heritage site, and analyzed the effectiveness of spatial analysis in the geographic weighted regression(GWR)method. Through identifying the main factors affecting the spatial distribution of soil total calcium,a calculation model for the spatial distribution of soil total calcium in the karst area was established to obtain basic data for studying the spatial distribution of soil total calcium. The soil erosion status was calculated by the soil erosion equation(USLE),and the spatial correlation between soil total calcium and soil erosion was comparatively analyzed to reveal the spatial migration law of soil total calcium. Results show that, (1) under the condition of consistent lithology,the relative height difference and slope are the dominant factors affecting the spatial distribution of total calcium in the soil. (2)The prediction accuracy of the GWR model is better than the global regression(OLS),of which the correlation coefficients are 0.41 and 0.39,respectively. (3)The spatial distribution characteristics of soil total calcium in the study area were calculated by the spatial estimation model of soil total calcium, yielding soil total calcium ranging from 0 to 37.68 g?kg-1. Research suggests that in the karst region with humid climate,despite the large vegetation coverage,the spatial distribution of total soil calcium is still highly affected by the soil-forming parent material. Karst peak forests have high soil erosion intensity,high soil total calcium content,and material migration is dominated by loss. The soil in peak clusters and depressions has low soil erosion intensity and low total calcium content, where the material migration is dominated by leaching loss.
-
[1] 蒋忠诚.岩溶动力系统中的元素迁移[J].地理学报,1999(5):438-444. [2] 曹建华.受地质条件制约的中国西南岩溶生态系统[M].北京:地质出版社,2005. [3] 李忠云,魏兴琥,李保生,等.粤北岩溶丘陵区不同地貌部位土壤钙的分布特征:以英德市九龙镇为例[J].热带地理,2015,35(1):89-95. [4] 谢丽萍,王世杰,肖德安.喀斯特小流域植被-土壤系统钙的协变关系研究[J].地球与环境,2007(1):26-32. [5] 邸欣月,安显金,董慧,等.贵州喀斯特区域土壤有机质的分布与演化特征[J].地球与环境,2015,43(6):697-708. [6] 周春衡,付智勇,吴丽萍,等.喀斯特坡地土层厚度及养分含量空间分布特征[J].农业现代化研究,2020,41(3):539-548. [7] Ou Z ,Pang S , He Q , et al. Effects of vegetation restoration and environmental factors on understory vascular plants in a typical karst ecosystem in southern China[J]. Scientific Reports, 2020, 10(1). [8] Springer,P Yuri. Edaphic quality and plant-pathogen interactions: effects of soil calcium on fungal infection of a serpentine flax. Ecology, 2009,90, 1852-1862. [9] 陈家瑞,曹建华,梁毅,等.石灰土发育过程中土壤腐殖质组成及其与土壤钙赋存形态关系[J].中国岩溶,2012,31(1):7-11. [10] W Li,L J Yu,Q F He,et al.Effects of microbes and their carbonic anhydrase on Ca2+and Mg2+migration in column-built leached soil-limestone karst systems[J].Applied Soil Ecology,2004,29(3):274-281. [11] 申瑞玲,郝云龙,蒋士飞.土壤重金属污染现状及其治理方法[J].西部资源,2014(6):137-139. [12] 魏兴琥,雷俐,刘淑娟,等. 粤北岩溶峰林植物钙吸收、转运、返还能力及适应性分析[J]. 中国岩溶, 2017, 36(3):268-376. [13] Robert J,Christine A,Jorg P.Calcium Loss in Central European Forest Soils[J]. Soil Science Society of America Journal,2004,68(2):588-595. [14] 陈同庆,魏兴琥,关共凑,等.粤北岩溶区不同土地利用方式对土壤钙离子的影响[J].热带地理,2014,34(3):337-343. [15] 黄芬,胡刚,涂春燕,等.岩溶区不同土地利用类型土壤钙形态分布特征[J].南方农业学报,2015,46(9):1574-1578. [16] 李菁,杨程,靳振江,等.断陷盆地区不同土地利用方式土壤钙形态分布特征[J].中国岩溶,2019,38(6):889-895. [17] Mcbratney A B, Santos M L M, Minasny B.On Digital Soil Mapping[J]. Geoderma, 2003,117:3-52. [18] Zhu A X, Qi F, Moore A, et al. Prediction of soil properties using fuzzy membership values[J].Geoderma,2010,158(3-4):199-206. [19] De Bruin S, Stein A.Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model(DEM)[J]. Geoderma, 1998, 83(1-2):17-33. [20] 瞿明凯,李卫东,张传荣,等.地理加权回归及其在土壤和环境科学上的应用前景[J].土壤,2014,46(1):15-22. [21] 刘卫东,刘红光,范晓梅,等.地区间贸易流量的产业—空间模型构建与应用[J].地理学报,2012,67(2):147-156. [22] 吕萍,甄辉.基于GWR模型的北京市住宅用地价格影响因素及其空间规律研究[J].经济地理,2010,30(3):472-478. [23] 霍霄妮,李红,孙丹峰,等.北京耕地土壤重金属空间自回归模型及影响因素[J].农业工程学报,2010,26(5):78-82. [24] 李锦芬,瞿明凯,黄标,等.区域土壤CEC与相关控制因子的空间非平稳关系评估[J].土壤学报,2017,54(3):638-646. [25] Song X D, Brus D J, Liu F, et al.Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China [J].case study in the Heihe River Basin,China[J].Geoderma, 2016,261:11-22. [26] Mishra U, Lal R, Liu D S, et al.Predicting the spatial variation of the soil organic carbon pool at a regional scale[J]. Soil Science Society of America Journal,2010,74(3):906-914. [27] Yang S H, Liu F, Song X D,et al.Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging:A case study in the Heihe River Basin, northwest China[J].Ecological Indicators, 2019,102:252-264. [28] Zhang C, Tang Y, Xu X, et al.Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland,2011,26(7):1-1248. [29] 郭龙,张海涛,陈家赢,等.基于协同克里格插值和地理加权回归模型的土壤属性空间预测比较[J].土壤学报,2012,49(5):1037-1042. [30] 赵明松,刘斌寅,卢宏亮,等.基于地理加权回归的地形平缓区土壤有机质空间建模[J].农业工程学报,2019,35(20):102-110. [31] 龙翠玲.茂兰喀斯特森林林隙主要树种的高度生态位[J].贵阳:贵州师范大学学报(自然科学版),2006(2):36-39. [32] 毛蓉.基于地理权重回归模型的土壤盐分空间预测及其应用[D].北京:中国地质大学(北京),2015. [33] 江忠善,郑粉莉.坡面水蚀预报模型研究[J].水土保持学报,2004(1):66-69. [34] Liu F,Zhang G L,Sun Y J,et al.Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape[J].Soil Science Society of America Journal,2013,77(4):1241-1253. [35] 杨子生.云南省金沙江流域土壤流失方程研究[J].山地学报,2002,(S1):1-9. [36] 杨顺华.基于空间回归模型的土壤有机质区域分布特征研究[D].武汉:华中农业大学,2016. [37] 李龙,吴丽芝,姚云峰,等.小流域土壤有机碳含量的空间变异特征研究:以内蒙古赤峰市黄花甸子流域为例[J].水土保持研究,2013,20(5):18-23. [38] 王库.基于地理权重回归模型的土壤有机质空间预测[J].土壤通报,2013,44(1):21-28. [39] 杨顺华,张海涛,郭龙,等.基于回归和地理加权回归Kriging的土壤有机质空间插值[J].应用生态学报,2015,26(6):1649-1656. [40] 连纲,郭旭东,傅伯杰,等.基于环境相关法和地统计学的土壤属性空间分布预测[J].农业工程学报,2009,25(7):237-242. [41] 李忠云,魏兴琥,李保生,等.粤北岩溶峰丛自然坡面土壤钙元素的空间分布[J].水土保持通报,2016,36(3):62-68. [42] 赵斯琦,王晓红,舒天竹,等. 喀斯特地区区域尺度土壤侵蚀地形因子研究[J]. 干旱区资源与环境, 2018, 32(5): 97-103. [43] 谭玮颐,周忠发,朱昌丽,等.喀斯特山区地形起伏度及其对水土流失敏感性的影响:以贵州省荔波县为例[J].水土保持通报,2019,39(6):77-83. [44] 马芊红,张科利.西南喀斯特地区土壤侵蚀研究进展与展望[J].地球科学进展,2018,33(11):1130-1141. [45] 郑伟,王中美.贵州喀斯特地区降雨强度对土壤侵蚀特征的影响[J].水土保持研究,2016,23(6):333-339. [46] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003(1):37-44. [47] 高江波,左丽媛,王欢.喀斯特峰丛洼地生态系统服务空间权衡度及其分异特征[J].生态学报,2019,39(21):7829-7839. [48] 潘根兴,滕永忠.土壤-灰岩岩溶系统中水文地球化学动力学过程模拟及其意义[J].地球化学,2000(3):272-276.
点击查看大图
计量
- 文章访问数: 1530
- HTML浏览量: 674
- PDF下载量: 104
- 被引次数: 0