山西龙子祠岩溶泉流量动态特征与影响因素分析
Dynamic characteristics and influence factors of discharge of the Longzici karst spring in Shanxi Province
-
摘要: 选取山西南部典型岩溶泉龙子祠泉域为研究对象,利用1954-2018年65年长时序的泉水流量、降水监测数据及1990-2018年的开采数据,分析其动态特征及响应规律。结果表明:该泉域泉流量在2.94~8.39 m3·s-1之间波动,多年平均流量为4.74 m3·s-1;年内泉流量对降水补给响应有4个月的时间滞后性;开采量保持较高水平时,泉流量总体呈明显下降趋势。利用多元回归方法建立两个阶段(1954-1989年和1990-2018年)的数学模型,并对其进行模拟和误差分析,结果显示:第一阶段泉流量影响因素主要为前一年降水和前两年降水;1990年开始存在开采活动,第二阶段受降水和开采共同制约,与当年开采量负相关且受其影响最为强烈,其次受前一年和前两年降水影响;整个时间序列上流量误差为11.62%,模拟效果较好。Abstract: The Longzici spring is located in front of the Xishan mountains, 13 km southwest of Linfen City, Shanxi Province. The spring area is 2,250 km2. The exposed strata are dominated by Cambrian and Ordovician, Carboniferous Permian, Triassic and Cenozoic Quaternary. Overall, the geological structure of the spring area is featured by uplift on the north and south sides, and a depression in the central part. The north is the Longzici syncline, which forms syncline mountains in topography, and the south is an underground structure sloping to the north or northeast. The recharge in this area is dominated by precipitation infiltration in the exposed carbonate rock area, followed by surface runoff infiltration recharge from the Carboniferous-Permian sand shale area. The aquifer is dominated by the Cambrian-Ordovician carbonate water-bearing rock group.In order to explore the spatial-temporal variation characteristics and response laws of spring dynamics in karst water-bearing systems, this paper uses a 65-year time series of spring water flow and precipitation monitoring data from 1954 to 2018 and mining data from 1990 to 2018, and employs the stepwise analysis of multiple regression methods to establish the response relationship models of spring discharge, precipitation and mining in stages. Then using the models we simulate and predict spring discharge over a long time sequence. The research results of this paper can provide data support for the prevention and control of the flow attenuation in the Longzici spring area. The conclusions of this article are as follows,(1) The precipitation ranges 287.2-868.7 mm with a multi-year average 541.1 mm in the spring area. More precipitation occurred after 1990 than before, and there was a four-month time lag in the response of spring flow to precipitation replenishment during the year. The average extraction volume of karst water for many years is 3.233 million cubic meters, and the average extraction volume of pore water in the piedmont area is 8.243 million cubic meters. When the extraction volume remains at a relatively high level, the spring flow generally shows a significant downward trend.(2) The spring flow fluctuates between 2.94-8.39 m3·s-1, and the multi-year average flow is 4.74 m3·s-1. Before 1990, the average flow was 5.61m3·s-1, while after 1990 it was 3.68 m3·s-1. In addition to factors such as mining and precipitation that affect spring flow, local coal mining activities also affect spring flow dynamics, which need to be analyzed in subsequent studies.(3) The results of multiple regression show that the main influencing factors of spring flow in the first stage (1954-1989) were the precipitations of the previous year and the previous two years. In the second stage (1990-2018), the spring flow was restricted by both precipitation and mining and was negatively correlated with the mining volume of the year, most strongly affected by it; followed by the precipitation of the previous year and the previous two years. Error analysis shows that the flow error in the entire time series is 11.62%, implying a good simulation effect.
-
Key words:
- Longzici /
- spring discharge /
- precipitation /
- extraction /
- long time sequence analysis /
- multiple regression
-
[1] 梁永平,唐春雷. 我国北方的岩溶大泉[N]. 中国自然资源报,2019-07-11(005). [2] 傅晓鸣, 郝永红, 范永辉, 等. 极端降水对娘子关泉流量的补给研究 [J]. 中国岩溶, 2013, 32(2): 140-147. [3] ADJI T N, BAHTIAR I Y. Rainfall-discharge relationship and karst flow components analysis for karst aquifer characterization in Petoyan Spring, Java, Indonesia [J]. Environmental Earth Sciences, 2016, 75(9): 735. [4] HAO Y, ZHANG J, WANG J, et al. How does the anthropogenic activity affect the spring discharge? [J]. Journal of Hydrology, 2016, 540(7): 1053-1065. [5] 范杰, 贾振兴, 郑秀清, 等. 基于GMS和NCC/GU-WG的晋祠泉水位及流量预测 [J]. 水电能源科学, 2016, 34(8): 36-39,53. [6] 范杰. 自然与人为活动叠加影响下晋祠泉域岩溶地下水位变化特征研究 [D].太原:太原理工大学, 2017. [7] 常勇, 吴吉春, 刘玲, 等. 岩溶泉流量衰减曲线分析 [J]. 水文, 2016, 36(1): 15-21. [8] LIU Y, WANG B, ZHAN H, et al. Simulation of Nonstationary Spring Discharge Using Time Series Models [J]. Water Resources Management, 2017, 31(15): 4875-4890. [9] 林云, 曲鹏冲, 吕海新, 等. 太行山东缘典型岩溶泉流量变化特征及规律分析 [J]. 中国岩溶, 2018, 37(5): 671-679. [10] DOUMMAR J, HASSAN KASSEM A, GURDAK J J. Impact of historic and future climate on spring recharge and discharge based on an integrated numerical modelling approach: Application on a snow-governed semi-arid karst catchment area [J]. Journal of Hydrology, 2018, 565(8): 636-649. [11] 张郑贤, 刘艺, 张锋贤. 基于时间序列模型的济南趵突泉地下水位预测 [J]. 中国水利水电科学研究院学报, 2019, 17(1): 51-59. [12] 黄华诚, 刘宏. 昆明市黑龙潭岩溶泉氢氧稳定同位素分析 [J]. 中国岩溶, 2015, 34(5): 445-451. [13] 赵瑞一, 吕现福, 刘子琦, 等. 岩溶泉水化学性质及δ13CDIC影响因素 [J]. 环境科学, 2015, 36(7): 2430-2436. [14] 盛婷, 杨平恒, 陈峰, 等. 典型岩溶泉主要化学成分来源及地球化学敏感性研究 [J]. 中国岩溶, 2018, 37(6): 827-834. [15] 谢国文, 杨平恒, 盛婷, 等. 人类活动影响下的垂直气候带岩溶泉地球化学特征对比:以重庆金佛山水房泉、碧潭泉为例 [J]. 环境科学, 2019, 40(7): 3078-3088. [16] 梁永平,赵春红,唐春雷,等.山西娘子关泉水及污染成因再分析[J].中国岩溶,2017,36(5):633-640. [17] 查小森, 谢世友, 李林立. 短时间尺度下岩溶泉碳汇效应研究:以重庆金佛山水房泉为例 [J]. 地下水, 2015, 37(2): 42-45. [18] 熊佰炼, 张进忠, 彭韬, 等. 典型岩溶地区岩溶泉溶解性碳浓度变化及其通量估算 [J]. 环境科学, 2018, 39(11): 4991-4998. [19] PANDZIC K, CESAREC K, GRGIC B. An analysis of the relationship between precipitation and discharge fields over a karstic river basin [J]. International Journal of Climatology, 1997, 17(8): 891-901. [20] Agarwal A, Bhatnaga N K, Nema R K, et al. Rainfall Dependence of Springs in the Midwestern Himalayan Hills of Uttarakhand[J]. Mountain Research and Development,2012,32(4): 446-455. [21] De Rooij R, Perrochet P, Graham W. From rainfall to spring discharge: Coupling conduit flow, subsurface matrix flow and surface flow in karst systems using a discrete-continuum model [J]. Advances in Water Resources, 2013, 61: 29-41. [22] Romano E, Del Bon A, Petrangeli A B, et al. Generating synthetic time series of springs discharge in relation to standardized precipitation indices. Case study in Central Italy [J]. Journal of Hydrology, 2013, 507: 86-99. [23] 靳少波. 黄河上游降水时空分布对龙羊峡入库流量影响分析 [J]. 甘肃水利水电技术, 2019, 55(3): 5-7. [24] Robertson W M, Allen J T, Wolaver B D, et al. Aridland spring response to mesoscale precipitation: Implications for groundwater-dependent ecosystem sustainability [J]. Journal of Hydrology, 2019, 570: 850-862. [25] Iacurto S, Sappa G, Grelle G, et al. Evaluation of Minimum Karst Spring Discharge Using a Simple Rainfall-Input Model: The Case Study of Capodacqua di Spigno Spring (Central Italy)[J]. Water,2019, 11: 807. [26] Fiorillo F, Doglioni A. The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy) [J]. Hydrogeology Journal, 2010, 18(8): 1881-1895. [27] 尤龙凤, 李洪建, 严俊霞. 兰村泉域岩溶地下水水位多元回归模型研究 [J]. 地下水, 2013, 35(1): 36-38. [28] 迟光耀, 邢立亭, 主恒祥, 等. 大气降水与济南泉水动态变化的定量关系研究 [J]. 地下水, 2017, 39(1): 8-11. [29] 南英华, 郭高轩, 许亮, 等. 基于多元线性回归的甘池泉流量对降水响应特征分析 [J]. 城市地质, 2019, 14(2): 31-35. [30] Howell B A, Fryar A E, Benaabidate L, et al. Variable responses of karst springs to recharge in the Middle Atlas region of Morocco [J]. Hydrogeology Journal, 2019, 27(5): 1693-1710. [31] 于翠翠, 陈瑞恒, 胡思敬, 等. 应用SPSS分析降水年际年内变化对泉水动态影响:以济南明水泉域百脉泉群为例 [J]. 山东国土资源, 2017, 33(3): 52-58. [32] 祁晓凡, 蒋忠诚, 罗为群. 典型表层岩溶水系统降水量与泉流量的交叉小波分析 [J]. 地球与环境, 2012, 40(4): 561-567. [33] 高月, 卞建民, 宋超, 等. 基于小波分析的抚松县降水量变化对矿泉水资源量的响应研究 [J]. 水文, 2016, 36(2): 35-40. [34] 邱金枝. 季风对娘子关泉域降水与泉水流量的影响 [J]. 哈尔滨商业大学学报(自然科学版), 2019, 35(2): 157-166. [35] Labat D, Ababou R, Mangin A. Rainfall-runoff relations for karstic springs. Part I: convolution and spectral analyses [J]. Journal of Hydrology, 2000, 238(3-4): 123-148. [36] Padilla A, Pulido-Bosch A. Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis [J]. Journal of Hydrology, 1995, 168(1-4): 73-89. [37] Seo S B, Das Bhowmik R , Sankarasubramanian A, et al. The role of cross-correlation between precipitation and temperature in basin-scale simulations of hydrologic variables [J]. Journal of Hydrology, 2019, 570: 304-314. [38] LABAT D, MANGIN A, ABABOU R. Rainfall-runoff relations for karstic springs: multifractal analyses [J]. Journal of Hydrology, 2002, 256(3): 176-195. [39] 许绍倬,王恒纯,李勇,等.山西龙子祠泉岩溶水系统分析[J].地球科学,1991(1):19-33. [40] 连炎清.地下水平均滞留时间及储存量计算的多输入单输出模型:以山西临汾龙子祠泉岩溶水系统地下水储量计算为例[J].水文地质工程地质,1989(2):25-28. [41] 叶海东.龙子祠泉岩溶水流量衰减原因及防治对策[J].科技情报开发与经济,2006(15):148-149. [42] 韩行瑞,鲁永安,李庆松,等. 岩溶水系统:山西岩溶大泉研究[M].北京:地质出版社,1993. [43] 梁永平,韩行瑞,王维泰,等.中国北方岩溶地下水环境问题与保护[M].北京:地质出版社,2013. [44] 梁永平,王维泰.中国北方岩溶水系统划分与系统特征[J].地球学报,2010,21(6):860-868. [45] 唐春雷,梁永平,王维泰,等. 龙子祠泉域岩溶水水化学-同位素特征 [J]. 桂林理工大学学报, 2017, 37(1): 53-58. [46] 张生. 临汾龙子祠泉岩溶水系统水文地质特征及开发利用前景[J]. 中国煤田地质, 2001, 13(2): 44-45,122. [47] 张人权,许绍倬,王恒纯,等. 山西省龙子祠及郭庄泉岩溶水系统研究报告[R]. 武汉:中国地质大学(武汉)水文地质与工程地质系, 1988. [48] 徐宝珊, 毛芬芳, 刘红兵. 山西龙子祠泉水流量多元回归予报方程的建立[J]. 山西师大学报(自然科学版),1990(1):68-72. [49] 梁永平,唐春雷,申豪勇,等.龙子祠泉域岩溶水环境问题成因调查及泉水增补措施研究报告[R]. 桂林:中国地质科学院岩溶地质研究所, 2015.
点击查看大图
计量
- 文章访问数: 1595
- HTML浏览量: 625
- PDF下载量: 159
- 被引次数: 0