• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百泉泉域岩溶地下水水化学演化特征及成因

王瑞 李潇瀚

王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因[J]. 中国岩溶, 2021, 40(3): 398-408.
引用本文: 王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因[J]. 中国岩溶, 2021, 40(3): 398-408.
WANG Rui, LI Xiaohan. Hydrochemical characteristics and genesis of karst groundwater in the Baiquan spring catchment[J]. CARSOLOGICA SINICA, 2021, 40(3): 398-408.
Citation: WANG Rui, LI Xiaohan. Hydrochemical characteristics and genesis of karst groundwater in the Baiquan spring catchment[J]. CARSOLOGICA SINICA, 2021, 40(3): 398-408.

百泉泉域岩溶地下水水化学演化特征及成因

基金项目: 中国地质调查项目(DD20160238);河北省省级科技计划项目(D2019403193);中国地质科学院基本科研业务费项目(JYYWF20181301);河北地质大学青年科技基金项目(QN202111);河北地质大学博士科研启动基金项目(BQ201610)

Hydrochemical characteristics and genesis of karst groundwater in the Baiquan spring catchment

  • 摘要: 百泉泉域岩溶地下水是河北邢台市生产和生活的主要供水水源。近年来受到自然条件变化和人类活动的影响,泉域地下水流场明显改变,水化学场演变机制有待查明。本研究在水文地质调查和样品采集测试的基础上,采用统计学方法(描述性统计、Person相关系数)、饱和指数计算和水化学方法(Piper图、Stiff图、Gibbs图、离子比例系数)对泉域岩溶水化学特征展开了系统分析。结果表明:泉域岩溶水为弱碱性淡水,Ca2+、Mg2+、HCO3-、SO42- 是地下水中的主要离子,主要来源于方解石、白云石和石膏的风化溶解,Na+和Cl-主要来源于少量岩盐的溶解。沿着径流方向方解石相对于地下水由溶解状态转变为平衡状态,而白云石、石膏和岩盐一直处于溶解状态。补给区和北部径流区基本为HCO3-Ca·Mg型水,七里河、沙河附近和南部煤铁矿区岩溶水除HCO3-Ca·Mg型外,还多出现HCO3·SO4-Ca型、CO3·Cl-Ca·Mg型和HCO3·SO4-Ca·Mg型水,煤铁矿区附近岩溶水中SO42- 的升高是受到了高SO42- 矿坑排水的混合影响。蒸发浓缩作用仅在水位埋深浅且地下水流动相对滞缓的排泄区较为明显,排泄点——百泉泉水为HCO3·SO4·Cl-Ca·Mg型。此外,人类工农业活动改变了地下水的径流条件和水质,使局部岩溶水中NO3-、Cl-、Fe、总硬度含量升高甚至超标。

     

  • [1] Su H, Kang W D, Xu Y J, et al. Evaluation of groundwater quality and health risks from contamination in the north edge of the Loess Plateau, Yulin City, Northwest China[J]. Environmental Earth Sciences, 2017, 76(13): 467.
    [2] 王浩, 汪林, 杨贵羽, 等. 我国农业水资源形势与高效利用战略举措[J]. 中国工程科学, 2018, 20(5): 9-15.
    [3] 梁杏, 张人权, 靳孟贵. 地下水流系统——理论应用调查[M]. 北京:地质出版社,2015: 64-70.
    [4] Liang Y P, Gao X B, Zhao C H, et al. Review characterization, evolution, and environmental issues of karst water systems in Northern China[J]. Hydrogeology Journal, 2018, 26: 1371-1385.
    [5] Drew D, H?tzl H. Karst hydrogeology and human activities: impacts, consequences and implications [M]. London: Taylor & Francis Group, 1999: 4-11.
    [6] 袁道先. 我国北方岩溶研究的形势和任务[J]. 中国岩溶, 2010, 29(3): 219-221.
    [7] 卢海平, 张发旺, 赵春红, 等. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(S2): 317-319.
    [8] 王延岭, 陈伟清, 蒋小珍, 等. 山东省泰莱盆地岩溶塌陷发育特征及形成机理[J].中国岩溶, 2015, 34(5) : 495-506.
    [9] 赵宪伟, 邬立, 韩旭. 基于水文地质条件分析的岩溶水源地保护区划分[J]. 中国岩溶, 2017, 36(4): 526-532.
    [10] Huang H, Chen Z H, Wang T, et al. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China[J]. Environmental Science and Pollution Research, 2019, 26: 30055-30068.
    [11] Lu S S, Chen J F, Zheng X Q, et al. Hydrogeochemical characteristics of karst groundwater in Jinci spring area, north China[J]. Carbonates and Evaporites, 2020, 35:68.
    [12] 梁永平, 王维泰, 赵春红, 等. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 2013, 32(1): 34-42.
    [13] 周乐, 刘元晴, 李伟, 等. 山东大汶河流域中上游古近系含水岩组水文地质特征[J]. 中国地质, 2019, 46(2): 316-327.
    [14] 黄奇波,覃小群, 刘朋雨,等. 柳林泉域岩溶地下水区域演化规律及控制因素[J]. 环境科学, 2019, 40(5): 2132-2142.
    [15] Lin Y, Ren H X, Wu Y Z, et al. The evolution of hydrogeochemical characteristics of a typical piedmont karst groundwater system in a coal?mining area, Northern China[J]. Environmental Earth Sciences, 2019, 78: 557.
    [16] 唐春雷, 郑秀清, 梁永平. 龙子祠泉域岩溶地下水水化学特征及成因[J].环境科学, 2020, 41(5): 2087-2095.
    [17] 王振兴, 李向全, 侯新伟, 等. 三姑泉域岩溶地下水分布特征及子系统识别[J]. 地球与环境, 2020, 48(2): 228-239.
    [18] Guo Y L, Zhang C, Xian Q, et al. Hydrogeochemical characteristics of a closed karst groundwater basin in North China[J/OL]. Journal of Radioanalytical and Nuclear Chemistry, 2020. https://doi.org/10.1007/s10967-020-07247-w
    [19] 叶和良, 林木金,李维才,等. 邢台百泉岩溶系统研究报告[R]. 石家庄: 华北有色地质勘探公司五一七队, 1989: 85-176.
    [20] 刘英学, 梁韵, 乔梁. 邢台百泉岩溶地下水系统水-岩反应特征分析[J]. 南水北调与水利科技, 2009, 7(4): 63-66.
    [21] 柴福鑫, 潘世兵, 石维新, 等. 邢台百泉泉域岩溶地下水模拟与方案调算[J]. 水文地质工程地质, 2016, 43(3): 17-21.
    [22] 李绪谦.环境水化学[M]. 长春:吉林科学技术出版社, 2001: 65-114.
    [23] GB/T14848-2017, 地下水质量标准[S].
    [24] 安乐生, 赵全升, 叶思源, 等. 黄河三角洲浅层地下水化学特征及形成作用[J]. 环境科学, 2012, 33(2): 370-378.
    [25] 钱会,马致远,李培月. 水文地球化学(第二版)[M]. 北京: 地质出版社, 2014: 61-73.
    [26] Deutsch W J. Groundwater geochemistry. Fundamentals and applications to contamination[M]. New Jersey: CRC Press, 1997: 27-33.
    [27] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science (New York,N.Y.), 1971, 172(3985): 1088-1090.
    [28] Moran-Ramírez J, Ramos-Leal J A, Mahlknecht J, et al. Modeling of groundwater processes in a karstic aquifer of Sierra Madre Oriental, Mexico[J]. Applied Geochemistry, 2018, 95: 97-109.
    [29] Zhang X B, Li X, Gao X B. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China[J]. Environmental Science and Pollution Research, 2016, 23: 6286-6299.
    [30] 张铁梅, 张玉宝, 于春水, 等. 河北省太行山南段1 20万区域水文地质普查报告[R]. 唐山:河北省地矿局第二水文地质工程地质大队, 1990: 84-89.
  • 加载中
计量
  • 文章访问数:  1500
  • HTML浏览量:  666
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 发布日期:  2021-06-25
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回