川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征
Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau
-
摘要: 以川西高原巴塘县、白玉县为研究对象,详细阐述研究区从三叠系到寒武系出露的主要可溶岩地层的分布、岩石成分、结构特征以及各地层的岩溶发育特征,系统总结出研究区可溶岩地层的特征和碳酸盐岩地层岩溶发育的规律。结果表明:研究区可溶地层呈北西南东向展布,明显受区域地质构造影响;岩溶地貌发育特征显示出与青藏高原主要地区岩溶地貌的一致性,属第三纪时期热带—亚热带环境下发育演化的覆盖型岩溶剥露地表而形成的古岩溶,且岩溶类型多样,形态与规模空间差异性明显;不同碳酸盐岩地层的岩溶发育程度统计显示,泥盆系溶蚀洼地所占面积最大,三叠系与志留系碳酸盐岩地层中溶蚀洼地个数较多,但发育密度低于泥盆系,二叠系溶蚀洼地个数与面积均为最小,石炭系地层由于碳酸盐岩纯度高且集中出露,溶蚀洼地发育密度最大。Abstract: This paper focuses on Batang county and Baiyu county, west Sichuan plateau. Based on data from field investigations, we analyze the geological background, topography, lithologic characteristics and distribution of carbonate rocks in exposed strata from Triassic to Cambrian, especially rock composition, structural characteristics and the distribution of karst development in the study area. The features of carbonate strata and law of karst development in the study area are systematically summarized. Results show that the soluble strata in the study area are distributed in a NW-SE direction, indicating an obvious control of regional geological structure. The karst landform development in the study area is consistent with that in the main areas of Tibetan plateau, belonging to the paleokarst formed by the exposed surface of the cover-type karst, which developed and evolved in a tropical-subtropical environment during Tertiary time with many karst types and distinct morphology and scales. Statistics of the karst development degrees of different carbonate rock formations shows that the Devonian depression occupies the largest area, and the Triassic and Silurian carbonate strata have more depressions, but their development density is lower than the Devonian. The number and area of Permian depressions are the smallest. The density of the Carboniferous karst depressions is the largest because of their relatively high purity and concentrating exposure.
-
Key words:
- plateau karst /
- karst landform /
- Batang region /
- Sichuan-Tibet railway
-
[1] 李大通,罗雁.中国碳酸盐岩分布面积测量[J].中国岩溶,1983,2(2): 147-157. [2] 蒋忠诚,覃小群,曹建华,等.中国岩溶作用产生的大气CO2碳汇的分区计算[J].中国岩溶, 2011,30(4):363-367. [3] 崔之久,洪云,陈怀录.青藏高原形成演化、环境变迁与生态系统研究[M].北京:科学出版社, 1994. [4] 崔之久,高全洲,刘耕年,等.夷平面、古岩溶与青藏高原隆升[J].中国科学(D),1996,26(4): 378-386. [5] 袁道先.岩溶学词典[M].北京:地质出版社,1988. [6] 李德文,崔之久,刘耕年.青藏高原古岩溶的存在及其与东邻地区岩溶的对比[J].中国岩溶,1999,18(4):309-318. [7] 高全洲,崔之久.青藏高原古岩溶风化壳红土中石英砂颗粒表面结构特征及环境意义[J].中山大学学报论丛,1997(5):64-67. [8] 崔之久,高全洲,刘耕年,等.青藏高原夷平面与岩溶时代及其起始高度[J].科学通报,1996,15(41):1402-1406. [9] 李德文,崔之久,刘耕年,等.岩溶分化壳形成演化及其循环意义[J].中国岩溶,2001,20(3):183-188. [10] 袁道先.中国岩溶学[M].北京:地质出版社,1994. [11] 张清林.川西巴塘地区断裂构造变形研究[D].成都:成都理工大学,2016. [12] Bin Qu, Yulan Zhang, Shichang Kang,et al. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”[J].Science of the Total Environment,2019,649(4):571-581. [13] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Science,2000,28 (1), 211-280. [14] 辜学达,刘啸虎.全国地层多重划分对比研究(51):四川省岩石地层[M].武汉:中国地质大学出版社,1997. [15] 许模,毛邦彦,张广泽,等.青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J].成都理工大学学报(自然科学版),2020,47(6):724-732.
点击查看大图
计量
- 文章访问数: 1237
- HTML浏览量: 573
- PDF下载量: 243
- 被引次数: 0