神农宫和祥龙洞洞温季节变化特征及其对石笋氧同位素组成的可能影响
Seasonal temperature changes in Shennonggong and Xianglong caves and their potential impact on oxygen isotope composition of stalagmite carbonate
-
摘要: 通过对江西万年县神农宫和陕西宁强县祥龙洞两个洞穴内、外温度连续19个月的同步监测以了解不同时间尺度下洞穴温度变化特征。结果显示神农宫及祥龙洞洞内温度存在明显的季节性变化:(1)神农宫夏秋季洞内温度在小时-日尺度上受到降水事件的影响显著,洞内夏秋季温度波动明显高于冬春季。祥龙洞监测点所处支洞环境相对封闭,温度波动在冬春季大于夏秋季,且全年洞温变幅小于神农宫。(2)旬—季节尺度的洞温数据显示,一个完整水文年内,神农宫两个监测点SN1、SN2的温度变幅分别达到4.8 ℃和4.6 ℃,祥龙洞达到3.2 ℃。(3)两个洞穴洞内温度响应洞外气温的变化都存在滞后性,且冬春季滞后大于夏秋季,可能受深部围岩温度相对偏高、空气和围岩热导率的季节变化以及降水季节差异的影响。最后,针对洞温存在较大季节变化的洞穴讨论了不同沉积模式下洞穴温度变化对石笋氧同位素组成18O的可能影响。认为此类洞穴某一时期石笋δ18O出现较大幅度偏正或偏负不一定反映了外界气候的大幅变化,也可能仅仅是由于洞穴沉积条件发生改变而造成的。Abstract: Consecutive 19-month temperature measurements in Shennonggong and Xianglong caves were conducted synchronously. The results indicate that the temperature was not stable in both caves, but oscillated on both hourly and seasonal time scales. Temperature data from inside and outside the caves show that in Shennonggong cave the temperature fluctuated more significantly during the summer season than in winter, revealing the impact of the amount of precipitation on the cave temperature. On the other hand, in Xianglong cave the amplitude of temperature oscillations is smaller during summer than in winter, implying that the chamber structures limit ventilation during the summer as it is hard for cold cave air in to flow out the high opening of the cave. The temperature inside the cave corresponds well with temperature outside the cave, with summer-winter temperature differences of 4.8 ℃ (4.6 ℃ at second site) and 3.2 ℃ in Shennonggong and Xianglong caves, respectively. The cave temperature response time to outside temperature changes varied seasonally at both cave sites. The lags in the decrease of cave temperature at the end of autumn were longer than those of the temperature increase at the end of spring in both caves. The different lags are likely due to the relatively high temperature in the deeper surrounding rock,the seasonal changes of the thermal conductivities of the air and the surrouding rock, as well as effects of seasonally changes in precipitation. It is noted that modern observations have shown the speleothem calcite may deposit only during the summer or winter (e.g., summer deposition mode or winter deposition mode). Thus, it may be deduced that the shift in speleothem growth seasons (deposition mode) may induce significant calcite δ18O changes in caves with large seasonal temperature changes.
-
Key words:
- cave temperature /
- seasonal variation /
- oxygen isotope composition /
- deposition mode
-
[1] 王晓青, 周长春, 孙小银.山东沂源九天洞洞穴环境变化监测分析[J]中国岩溶,2008,27(1):91-96. [2] 宋林华, 王静, 梁福源.人类和自然因素对风景旅游洞穴环境的影响研究 [J]中国岩溶,2004,23(2):91-99. [3] 车家骧, 彭熙, 严忠海.贵州龙宫风景名胜区水溶洞环境变化特征与预测研究[J]热带地理,2012,32(04):385-388. [4] 蔡炳贵, 沈凛梅, 郑伟.本溪水洞洞穴空气 CO2浓度与温, 湿度的空间分布和昼夜变化特征[J]中国岩溶,2009,28(4):348-354. [5] McDermott F.Palaeo-climate reconstruction from stable isotope variations in speleothems: a review[J]Quaternary Science Reviews,2004,23(7):901-918. [6] He L Y, Hu C Y, Cao Z H ,et al.Correspondences of Heshang cave temperature to climatic change in Qingjiang, Hubei[J]Carsologica Sinica,2008,27(3):273-277,282. [7] Sondag F, van Ruymbeke M, Soubiès F, et al.Monitoring present day climatic conditions in tropical caves using an Environmental Data Acquisition System (EDAS)[J]Journal of Hydrology,2003,273(1):103-118. [8] 张海伟, 蔡演军,谭亮成.石笋矿物类型, 成因及其对气候和环境的指示[J]中国岩溶,2010,29(3):222-228. [9] Tan L,Yi L, Cai Y, et al.Quantitative temperature reconstruction based on growth rate of annually -layered stalagmite: a case study from central China[J]Quaternary Science Reviews,2013,72:137-145. [10] B?gl,Alfred Schmid,C June .Karst hydrology and physical speleology[M] Berlin :Springer Verlag, 1980:284. [11] Genthon P, Bataille A, Fromant A, et al.Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at La Peyrére cave (Ariège, France)[J]Journal of Hydrology,2005,311(1):157-171. [12] Baker A ,Genty D. Environmental pressures on conserving cave speleothems: effects of changing surface land use and increased cave tourism[J] Journal of Environmental Management,1998,53(2):165-175. [13] Buecher R H. Microclimate study of Kartchner caverns, Arizona[J]Journal of Cave and Karst Studies,1999,61(2):108-120. [14] Pflitsch A,Piasecki J.Detection of an airflow system in Niedzwiedzia (Bear) cave, Kletno, Poland[J]Journal of Cave and Karst Studies,2003,65(3):160-173. [15] Epstein S, Buchsbaum R, Lowenstam H, et al.Carbonate-water isotopic temperature scale[J]Geological Society of America Bulletin,1951,62(4):417-426. [16] Epstein S, Buchsbaum R, Lowenstam H A, et al.Revised carbonate-water isotopic temperature scale[J]Geological Society of America Bulletin,1953,64(11):1315-1326. [17] Craig H, Gordon L,Horibe Y.Isotopic exchange effects in the evaporation of water: 1.Low-temperature experimental results [J] Journal of Geophysical Research, 1963, 68(17):5079-5087. [18] Hendy C H,Wilson A T. Palaeoclimatic data from speleothems[J]Nature,1968,219:48-51. [19] O'Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]The Journal of Chemical Physics,1969,51:5547. [20] 陈跃, 黄培华 ,朱洪山.北京周口店地区洞穴内第四纪石笋的同位素古温度研究[J]科学通报,1986,20(1):576-1. [21] 洪阿实,彭子成.福建宁化天鹅洞石笋晚第四纪同位素古温度研究[J]地球化学,1995,24(2):138-145. [22] Hu C, Henderson G M, Huang J, et al.Report of a three-year monitoring programme at Heshang Cave, Central China[J]International Journal of speleology,2008,37(3):1. [23] 张美良, 朱晓燕, 林玉石, 等.洞穴滴 (流) 水的沉积及溶—侵蚀作用:以桂林盘龙洞为例[J]中国岩溶,2007,26(4):326-333. [24] Duan W, Cai B, Tan M, et al.The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring[J]Boreas,2012, 41(1):113-123. [25] 班凤梅, 潘根兴, 蔡炳贵,等.北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义[J]中国岩溶,2009,28(3):243-248. [26] 张伟, 段武辉, 吴江滢, 等.南京葫芦洞缺失现代沉积的一个重要原因: 盐效应?——与同一气候条件下安徽蓬莱仙洞的对比研究[J]第四纪研究,2012,32(2):361-369. [27] Yuan D, Cheng H, Edwards R L, et al.Timing, duration, and transitions of the last interglacial Asian monsoon[J]Science,2004,304(5670):575-578. [28] Dykoski C A, Edwards R L, Cheng H, et al.A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]Earth and Planetary Science Letters,2005,233(1):71-86. [29] Wang Y, Cheng H, Edwards R L, et al.The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]Science,2005,308(5723):854-857. [30] Cai Y, An Z, Cheng H, et al.High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]Geology, 2006,34(8):621-624. [31] Fleitmann D, Burns S J, Mangini A, et al.Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]Quaternary Science Reviews,2007,26(1):170-188. [32] Wang Y J, Cheng H, Edwards R L, et al.A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]Science,2001,294(5550):2345-2348. [33] Tan L, Cai Y, Cheng H, et al.Summer monsoon precipitation variations in central China over the past 750years derived from a high-resolution absolute-dated stalagmite[J]Palaeogeography, Palaeoclimatology, Palaeoecology,2009,280(3):432-439. [34] Cai Y, Tan L, Cheng H, et al.The variation of summer monsoon precipitation in central China since the last deglaciation [J]Earth and Planetary Science Letters,2010,291(1):21-31. [35] Tan L, Cai Y, An Z, et al.Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave[J]The Holocene,2011,21(2):287-296.
点击查看大图
计量
- 文章访问数: 1845
- HTML浏览量: 270
- PDF下载量: 1235
- 被引次数: 0