岩溶土洞演化及其数值模拟分析
Evolution and numerical simulation of a karst soil cave
-
摘要: 土洞是覆盖型岩溶区一种隐伏的不良地质现象。土洞在水的作用下发育演化最终形成塌陷,可通过地下水位的变化来研究土洞发育和塌陷的形成。同时土洞的演化会造成覆盖土体不均匀位移和应力重分布,可通过覆盖土体位移和应力变化来进行研究土洞演化过程。采用FLAC3D三维有限差分程序,分析覆盖层垂向位移场表明:最大垂向位移出现在土洞顶部,使拱顶出现拉张破坏,并可根据洞顶土层位移的数值模拟结果,划分“等沉面”确定土洞扰动的土层深度。分析覆盖层剪切应力场表明:在土洞拱趾部位出现剪应力集中,会造成拱趾的剪切破坏,并可根据洞顶“剪应力低值区”,判断覆盖层中土拱效应的存在。分析覆盖层塑性区表明:较为坚硬的黏土层中,土洞以拱顶塌落和拉张破坏为主,最终可以形成坑壁较为陡直的桶状或坛状塌坑。土层较为松散时,以拱趾的剪切破坏为主,最终可以形成锥碟形塌陷坑。利用“剪应力低值区”,“等沉面”和“塑性区”可综合判断土洞的稳定性以及覆盖层所能形成的极限土洞大小。岩溶土洞演化规律及数值模拟研究对岩溶塌陷(土洞)早期监测和评价有着重要的理论及工程意义。Abstract: Soil caves in karst areasarea concealed and adverse geological phenomena. The evolution of a soil cave can cause uneven displacement and stress redistribution on the overlying soil layer, conversely changes in displacement and stress can be used to study soil cave evolution using three-dimensional finite-difference software FLAC3D. The vertical displacement field of the soil layer shows that, the maximum vertical displacement taking place on the arch roof of the soil cave may cause tensile failure of the arch roof. Based on the level of soil layer displacement on the arch roof, an "equal settlement plane" can be drawn to determine the depth of the soil cave. The shear stress field of the soil layer indicates that, the maximum shear stress in the arch toes can cause arch toe shear failure, and the "low shear stress area" can be used to determine the impact of the arching effect on the overlying soil layer. Through analysis of the plastic zone of the soil layer, it is concluded that, in rigid clay areas, soil caves with barrel bottle-shaped pit collapse were mainly caused by arch roof collapse and tensile failure; while in areas of loose soil, caves with taper or plate-shaped pit collapse resulted from shear failure of the arch toe. The low shear stress area, equal settlement plane and plastic zone can be adopted to evaluate the stability of soil caves and the limits on hole size in the overlying layer. Evolution and numerical simulation of karst soil caves in this study provide important theoretical and engineering results for monitoring and evaluation of early stage karst collapse.
-
Key words:
- karat collapse /
- soil cave /
- FLAC3D /
- numerical simulation
-
[1] 康彦仁.岩溶地面塌陷的形成条件[J]中国岩溶.1987,6(4):9-18. [2] 陈国亮,陈裕昌,谭鸿增,等. 岩溶地面塌陷机制、预测及整治研究[J] 地质灾害与防治. 1990, 1(3):39-48. [3] 雷明堂,蒋小珍.岩溶塌陷研究现状、发展趋势及其支撑技术方法[J]中国地质灾害与防治学报,1998,9( 3):11-16. [4] 蒋小珍,雷明堂,管振德.单层土体结构岩溶土洞的形成机理[J]中国岩溶, 2012,31(4): 426-432. [5] 戴建玲,雷明堂, 蒋小珍.线性工程岩溶塌陷危险性评价研究[J]。中国岩溶,2012,31(3):296-302. [6] 黄健民,吕镁娜,郭宇,等.广州金沙洲岩溶地面塌陷地质灾害成因分析研究[J],中国岩溶,2013,32(2):167-174. [7] 万志清,秦四清,李志刚,等.土洞形成的机理及起始条件[J]岩石力学与工程学报, 2003,11(8):1377-1382. [8] 王滨,贺可强,高宗军.岩溶塌陷发育的时空阶段性分析[J]水文地质工程地质,2001,28(5):25-27. [9] 程星,彭世寿.岩溶区地下水位下降致塌的数值模拟研究[J]地球与环境,2005,31(S1): 119-123. [10] 蒋小珍.岩溶塌陷中水的触发作用[J] 中国地质灾害与防治学报,1998,9(3):42-47. [11] 朱衍峰,周晓军,邓彬. 地铁施工中地下建筑物对地表沉降的控制标准[J] 四川建筑,2008,(01):86-87. [12] Terzaghi K. Theoretical soil mechanics[M] New York:Wiley,1943. [13] Handy R L.The arch in soil acrhing[J] Journal of Geotechnical Engineerang,1985,111(3):302-318. [14] Kèzdi A. Lateral Earth Pressure. Foundation Engineering Handbook, Eds. Winterkorn H F & Fang, H Y, Van Nostrand Reinhold Company, New York, 1975:197-220.
点击查看大图
计量
- 文章访问数: 1981
- HTML浏览量: 392
- PDF下载量: 1609
- 被引次数: 0