数值模拟方法在隐伏岩溶水源地保护区划分及污染治理中的应用
Application of the numerical simulation method in concealed karst wellhead for protection area delimitation and contamination prevention
-
摘要: 文章以北京市东南郊大兴迭隆起隐伏岩溶水子系统内的两个水源地(大兴念坛水源地与通州龙旺庄水源地)为例,研究数值模拟方法在隐伏岩溶地下水水源地保护区划分中的应用。研究基础为基于GMS建立的包括第四系与岩溶含水层在内的三维非稳定流地下水数值模拟模型,采用的主要技术手段为质点追踪技术,结合溶质质点迁移100 d与1 000 d的距离划分水源地的一级与二级保护区,并提出相应的污染防控措施。研究得出,对于隐伏岩溶水大部分来自上覆第四系松散孔隙水越流补给的情况,岩溶水源地保护区即是上覆松散含水层的保护区范围,应加强第四系孔隙含水层地下水污染的防治,以保护岩溶水不受污染。Abstract: A wellhead protection area (WHPA) is an effective technical method and basic standard for safeguardking groundwater resources. Frequently-used methods for WHPA delimitation include the empirical approach, analytical methods, tracing tests and numerical simulation. Of these, numerical simulation is preferred for complicated hydrogeological conditions. It is quite difficult to use numerical simulation methods in WHPA delimitation for a concealed karst aquifer, as a result of its heterogeneity, anisotropy, parameter uncertainty and development under Quaternary or other bedrock. This study takes two groundwater sources, Daxing Niantan wellhead and Tongzhou Longwangzhuang wellhead, which are located in the concealed karst system southeast of Beijing, as examples to study the numerical simulation method of WHPA delimitation. The numerical simulation model, which takes the three-dimensional transient flow of Quaternary and karst aquifer into consideration, is established by the GMS. Then particle tracing technology is used to confirm the WHPA, taking a tracing time of 100 days as the primary protection zone and 1,000, days as the secondary protection zone. Related pollution-control measures are proposed according to the WHPA results. Additionally, given that leakage from the overlying Quaternary loose-porosity aquifer is the primary recharge source for the concealed karst aquifer, the boundary of the Quaternary WHPA is as the same as the boundary of the karst WHPA. Control of the Quaternary water contamination needs to be enhanced to prevent pollution of the karst water.
-
[1] 国家环境保护总局. 饮用水水源地保护区划分技术规范(HJ/T338-2007)[S] 2007. [2] Anon. EPA Releases Proposed Ground Water Rule[J] Water World,2000,16(6):107-109. [3] 徐启新, 车越, 杨凯. 中美水源地管理体系的比较研究[J] 上海环境科学,2003, 22(7):487-490. [4] 中华人民共和国水污染防治法[S] 1984. [5] Panagopoulos G. Application of MODFLOW for simulating groundwater flow in the Trifilia karst aquifer, Greece [J] Environmental Earth Sciences, 2012,67(7):1877-1889. [6] Giudici M, Univ Milan. Modelling hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy)[J]Environmental Earth Sciences,2012,67(7):1891-1907. [7] 钱家忠,吴剑锋,董洪信,等.徐州市张集水源地裂隙岩溶水三维等参有限元数值模拟[J]水利学报,2003,(3):37-41. [8] 刘猛,束龙仓,刘波.地下水数值模拟中的参数随机模拟[J]水利水电科技进展,2005,25(6):25-27. [9] 付延玲.邯邢水文地质南单元岩溶地下水系统数值预报[J]中国岩溶,2002,21(4):269-275. [10] 北京市大兴县念坛水源地供水水文地质详查报告[R] 北京市水文地质工程地质大队,1993. [11] 北京市大兴区隐伏基岩地下水普查[R] 北京市水文地质工程地质大队,1997. [12] 韩志文, 蒙格平. 北京市大兴区岩溶地下水水位变化趋势分析[J] 北京水利,2004,(6):21-24. [13] 王晓红, 刘文臣. 北京市大兴区地下水资源开采潜力分析[J] 城市地质,2006,1(1):21-24. [14] 北京市通县基岩岩溶水普查报告[R] 北京市水文地质工程地质大队,1995. [15] 通州龙旺庄隐伏灰岩应急水源地供水水文地质勘探报告[R] 北京市水文地质工程地质大队,1998. [16] 吕晓俭, 李宇. 北京市通州区龙旺庄隐伏灰岩水源地勘查与评价研究[J] 水文地质工程地质,1999,(2):17-21. [17] 李海京. 平原缺水区隐伏岩溶水的供水意义:以通州区龙旺庄隐伏灰岩水源地的勘查运行为例[J] 城市地质,2007,2(4):49-51. [18] 王小英,高洁,赵惠玲,等.2005~2006年北京市大兴区农村地下水水质监测结果分析[J]预防医学论坛,2008,14(3):252-253. [19] McDonald M G,Harbaugh A W. A Modular Three-dimensional Finite-difference Ground-water Flow Model[R] Techniques of Water-Resources Investigations of USGS, Book 6, Chapter A1,1988. [20] 南天,李鹏,李星宇,等.大兴迭隆起隐伏岩溶水资源评价及开采方案预测[J]中国岩溶,2014,33(2):156-166. [21] 李国敏, 徐海珍.地下水源地保护区划分方法与应用[M]北京:中国环境科学出版社,2011.
点击查看大图
计量
- 文章访问数: 1874
- HTML浏览量: 276
- PDF下载量: 1204
- 被引次数: 0