基于TM影像的广西河池市岩溶地区植被覆盖度的动态变化研究
Study of dynamic changes in fractional vegetation coverage in Hechi City in Guangxi karst regions based on TM images
-
摘要: 选取广西河池市岩溶地区1990、2000和2010年3个时相的TM影像,采用基于NDVI的像元二分模型,探讨该区植被覆盖度的时空动态变化特征及其与非岩溶区的异同。结果表明:(1)近20年来,高植被覆盖区的面积在逐渐增加,其占整个研究区域面积的比例从1990年的30.81 %增加到2010年的53.66 %,较低植被覆盖区、中度植被覆盖区和较高植被覆盖区的面积在逐渐减少,其占整个研究区域面积的比例从1990年的9.63 %、17.25 %和31.97 %下降到2010年的8.54 %、9.88 %和26.74 %。(2)近20年来,岩溶区低植被覆盖区的面积变化率比非岩溶区的大,岩溶区的面积变化率是37.74 %,非岩溶区仅为是3.28 %。而非岩溶区的较低植被覆盖区、中度植被覆盖区、较高植被覆盖区和高植被覆盖区的面积变化率则比岩溶区的要大,非岩溶区的面积变化率分别是54.30 %、57.47 %、26.75 %、75.77 %,而岩溶区的面积变化率分别是34.87 %、43.07 %、16.34 %、71.55 %。(3)1990-2000年岩溶区中较低植被覆盖区、中度植被覆盖区的面积变化幅度比2000-2010年的要大,两个时期的变化率分别是4.68 %、0.11 %和5.68 %、1.79 %。2000-2010年低植被覆盖区、较高植被覆盖区的面积变化幅度比1990-2000年的要大,两个时期的变化率分别是1.75 %、5.07 %和1.64 %、3.59 %。2000-2010年非岩溶区中高植被覆盖区的面积变化幅度比1990-2000年的大,1990-2000年的变化幅度是8.38 %,2000-2010年的变化幅度是16.04 %。岩溶区与非岩溶区植被覆盖度变化的这种差异,主要由于两者间的岩性条件不同所引起。Abstract: Hechi City is located in northwest Guangxi Province, one of the most famous karst regions in southwest China with high temperature and precipitation. The area's upper Paleozoic Devonian, Carboniferous, Permian and Triassic carbonate sedimentary rocks have a total thickness of nearly 10,000 meters. The karst topography in Hechi is well developed, concentrated and morphologically diverse. Three periods of the Landsat TM images were selected (1900, 2000 and 2010) to investigate space-time dynamic changes in the fractional vegetation coverage and changes in the karst and non-karst regions, delineation of the different vegetation cover and their change in area according to the dimidiate pixel model based on NDVI. It was shown that during the 20 year period from 1990 to 2010, the area of high vegetation coverage increased from 30.81 % to 53.66 % of the total study area. However, the medium-low, medium and medium-high fractional vegetation coverage areas decreased from 9.63 % to 8.54 %, 17.25 % to 9.88 %, and 31.97 % to 26.74 % respectively during the same period. This shows that, over nearly 20 years, returning farmland to forests in karst regions has been an effective rocky desertification control measure. The change in the area of low fractional vegetation coverage was greater in the karst districts than in the non-karst districts, with change rates of 37.74 % in karst and 3.28 % in non-karst over nearly 20 years. But changes in the area of medinm-low, medium, medium-high and high fractional vegetation coverage were greater in non-karst than in karst, with change rates of 54.3 %, 57.47 %, 26.75 %, 75.77 % in non-karst and 34.84 %, 43.07 %, 16.34 %, 71.55 % in karst. The change in the area of medinm-low and medium fractional vegetation coverage from 1990-2000 was greater than that from 2000-2010, with the change rates of 4.68 %, 0.11 % and 5.68 %, 1.79 % for these two periods. But the change in the area of low and medium-high fractional vegetation coverage from 2000 to 2010 was greater than that from 1990 to 2000, with the change rates of 1.75 %, 5.07 % and 1.64 %, 3.59 % in these two periods. In non-karst, the change in the area of high vegetation coverage from 2000 to 2010 was greater than that from 1990 to 2000, with change rates of 8.38 % from 1990 to 2000 and 16.04 % from 2000 to 2010. The differences in the change of vegetation fraction between karst district and non-karst district are mainly due to differences in lithological conditions.
-
Key words:
- TM /
- dimidiate pixel model /
- NDVI /
- vegetation fraction /
- Hechi
-
[1] Sellers P J ,Tucker C J,Collatz G J,et al . A revised land surface parameterization ( SiB2 ) for atmospheric GCMs. PartⅡ: The generation of global fields of terrestrial biophysical parameters from satellite data[J]. Journal of Climate,1996, 9(4):706-737. [2] Qi J, Marsett R C, Moran M S, et al.Spatial and temporal dynamics of vegetation in the San Pedro River basin area[J]. Agricultural and Forest Meteorology, 2000,105(1):55-68. [3] 贾宝全.基于TM卫星影像数据的北京市植被变化及其原因分析[J].生态学报, 2013,33(5): 1654-1666. [4] 张志新,邓孺孺,李灏,等.基于混合像元分解的南方地区植被覆盖度遥感监测——以广州市为例[J].国土资源遥感, 2011,23(3): 88-94. [5] 邓军. 桂西岩溶堆积型铝土矿床地质特征及成矿模式[J].南方国土资源, 2006,(2): 35-37. [6] Gutman G, Ignatov A.The Derivation of the Green Vegetation Fraction From NOAA/AVHRR Date for Use in Numerical Weather Prediction Models. International Journal of Remote Sensing,1998,19 (8):1533-1543. [7] 李苗苗,吴炳方.密云水库上游植被覆盖度的遥感估算[J].资源科学, 2004,26(4):153-159. [8] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:1387-1398. [9] 池宏康,周广胜,许振柱,等.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80. [10] 黄靖,夏智宏.基于MODIS遥感数据的武汉市植被覆盖变化监测分析[J].气象与环境科学,2009,32(2):16-20. [11] 王兮之,梁钊雄.基于MODIS数据的湟水流域植被覆盖变化研究[J].干旱区资源与环境,2010,24( 6) : 137-142. [12] 罗亚,徐建华,岳文泽.基于遥感影像的植被指数研究方法评述[J].生态科学,2005,24(1):75-79. [13] Gamon J A,Pe?uelas J,Field C B.A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J].Remote Sensing Environment,1992,41(1):35-44. [14] 龚建周,夏北成.广州市1990-2005年植被覆盖度的时空变化特征[J].生态环境,2006,15(6) : 1289-1294. [15] 刘玉安,黄波,程涛,等.基于像元二分模型的淮河上游植被覆盖度遥感研究[J].水土保持通报,2012,32(1):93-97. [16] 马明国,董立新,王雪梅. 过去21a中国西北植被覆盖动态监测与模拟[J].冰川冻土, 2003, 25(3) : 232-236. [17] 阎福礼,李震,邵芸,等. 基于NOAA/AVHRR数据的西部植被覆盖变化监测[J].兰州大学学报(自然科学版) , 2003,39(2):90-94. [18] 曾馥平,彭晚霞,宋同清,等.桂西北喀斯特人为干扰区植被自然恢复22年后群落特征[J].生态学报,2007,27(12):5110-5119. [19] 孔祥丽,王克林.喀斯特地区退耕还林工程的生态经济效益分析——以桂西北河池市为例[J].江西农业学报,2009,21(11):138-142.
点击查看大图
计量
- 文章访问数: 1721
- HTML浏览量: 309
- PDF下载量: 1218
- 被引次数: 0