北京张坊地区岩溶地下水运移富集的构造控制分析
Research about the control of geological structure on karst groundwater system in Zhangfang, Beijing
-
摘要: 北京西山张坊地区碳酸盐岩集中分布,地下水赋存于复杂的构造裂隙网络中,形成岩溶裂隙水。文章从构造空间分布的属性和规律出发,分析了在张坊地区褶皱构造格架控制的岩溶水文地质单元内,地下水赋存富集规律与多期构造演化产生的一系列北东-北西向、南北向断裂及裂隙网络的制约关系。研究表明,本区断裂经历了侏罗世逆冲推覆活动与白垩世的伸展构造,先压后张两期构造作用的叠加,形成了多条区域性断裂,其导水性能大为增强。裂隙中频度较大的NE和NW向是优势裂隙,表现出构造节理的共轭特征,多高倾角或直立,导致雨水的直接下渗;在裂隙交汇带构成了区域地下水的径流通道和存储空间,控制了白岱、甘池-长沟、高庄-石窝富水区的形成以及岩溶泉的出露,具有重要的供水意义。Abstract: Carbonate formations are intensively distributed throughout Zhangfang, Fangshan, in the West Mountain area of Beijing. Karst groundwater exits among the geological fracture network which is characterized by the different arrangements and levels in different types of fracture networks and structures. The influence of the tectonic environment on the dynamic change rule and the enrichment regulation of karst groundwater system is significant for the exploitation and protection of karst groundwater resources.From the control function of fault and fracture point of view, based on the developmental and distribution pattern of multi-episodic tectonism, this study analyzed fractures in the three-fold structural units characterized by NE-NW and NS trends and discussed the influence of multi-episodic tectonism on groundwater flow, the spring system and rich water zones.The results showed that the geological fracture underwent two episodes of tectonism, thrusting nappe in the Jurassic and extension in the Cretaceous. The overprint of the processes of the two tectonic episodes resulted in a number of faults with high hydraulic conductivity, which serve as conduits. The superior joint groups are in the NE and NW directions, with conjugated characteristics. The high-angle or vertical dips directly benefit infiltration. The fractures in the intersection areas have formed groundwater runoff channels and storage space, controlling water-rich zones such as Baidai, Ganchi-Changgou and Gaozhuang-Shiwo. Magmatic rock and the aquiclude also contribute to the rich water zones and the location of springs, all of which have important significance for water supply.
-
[1] 袁道先.中国岩溶学[M].北京:地质出版社,1993. [2] 韩行瑞,鲁荣安,李庆松.岩溶水系统——山西岩溶大泉研究[M].北京:地质出版社,1993:211-229. [3] 梁永平,王维泰.中国北方岩溶水系统划分与系统特征[J].地球学报,2010,319(6):860-868. [4] 何宇彬,韩宝平,徐超,等.中国喀斯特水研究[M].上海:同济大学出版社,1997. [5] 朱远峰.中国岩溶水系统和岩溶水资源研究进展(工程地质水文地质环境地质论文集)[C].北京:地震出版社,1993:194-199. [6] 吕晓俭,李宇.北京市通州区龙旺庄隐伏灰岩水源地勘查与评价研究[J].水文地质工程地质, 1999, 26(2):17-21. [7] 万力,蒋小伟,王旭升.含水层的一种普遍规律:渗透系数随深度衰减[J].高校地质学报,2010,16(1):7-12. [8] 谢振华,张兆吉,邢国章,等.华北平原典型城市地下水供水安全保障分析[J].资源科学,2009,31(3):400-405. [9] 韩宝平.微观喀斯特作用机理研究[M].北京:地质出版社,1998. [10] Winter H, Stoll J, Aulbach E. New electrical potential logging tool: Sci Drilling, 1991, 2(4): 147-159. [11] Nativ R, Adar EM, Becker A. Designing a monitoring network for contaminated ground water in fractured chalk[J]. Ground Water,1999,37(1):38-47. [12] Illman WA, Neuman SP. Type curve interpretation of a cross-hole pneumatic injection test in unsaturated fractured tuff[J]. Water Resources Research,2001,37(3):583-603. [13] Benischke R, Goldscheider N, Smart C. Tracer techniques. In: Goldscheider, N., Drew, D. (Eds.), Methods in Karst Hydrogeology.Taylor & Francis Group, London, UK, 2007:147-170. [14] Gabrovsek F, Dreybrodt W. Spreading of tracer plumes through confined telogenetic karst aquifers: A model[J]. Journal of Hydrology,2011, 409 (1):20-29. [15] Dafny Elad, Burg Avi, Gvirtzman Haim. Effects of Karst and geological structure on groundwater flow: The case of Yarqon-Taninim Aquifer, Israel[J]. Journal of Hydrology, 2010, 389(3):260-275. [16] Elmahdy S I, Mohamed M M. Relationship between geological structures and groundwater flow and groundwater salinity in Al Jaaw Plain, United Arab Emirates; mapping and analysis by means of remote sensing and GIS[J]. Arabian Journal of Geosciences, 2014, 7(3): 1249-1259. [17] Morikawa N,Kazahaya K,Masuda H,et al.Relationship between geological structure and helium isotopes in deep ground-water from the Osaka Basin: Application to deep groundwater hydrology[J]. Geochemical Journal, 2008,42(1): 61-74. [18] 肖楠森.新构造分析及其在地下水勘查中的应用[M].北京:地质出版社,1986. [19] 钱学溥.中国蓄水构造类型[M].北京:科学出版社,1990. [20] 刘光亚.基岩地下水[M].南宁:广西人民出版社,1980. [21] 吕金波,李铁英,孙永华,等.北京石花洞的岩溶地质特征[J].中国区域地质, 1999,18(4):373-378. [22] 吕金波,卢耀如,郑桂森,等.北京西山岩溶洞系的形成及其与新构造运动的关系[J].地质通报, 2010,29(4):502-509. [23] 辛宝东.北京市房山区岩溶地下水水文地球化学特征[J].水文地质工程地质, 2005, 32(3): 74-75. [24] 郭高轩,刘文臣,辛宝东,等.北京岩溶水勘查开发的现状与思考[J].南水北调与水利科技, 2011,9(2):33-36. [25] 李世君.北京张坊岩溶地下水库特征及调蓄能力研究[D].中国地质大学(北京),2012. [26] 北京市水文地质工程地质大队.北京应急水源-房山岩溶地下水供水水文地质勘察与评价[R].2007. [27] 北京师范大学地理系山区找水组,北京市地质局水文-大队山区组.关于不同力学性质断裂构造各部位富水性的几点认识[J].北京师范大学学报(自然科学版),1976,(1):73-79. [28] 沈媛媛,辛宝东,郭高轩,等.北京房山岩溶水应急水源地地下水流数值模拟及预测[J].南水北调与水利科技,2001,9(5):103-106,114. [29] 刘记来.北京应急地下水源地开采极限研究[D].中国科学院研究生院,2010.
点击查看大图
计量
- 文章访问数: 1512
- HTML浏览量: 326
- PDF下载量: 1299
- 被引次数: 0