重庆金佛山羊口洞滴水δD和δ18O变化特征及其环境意义
Environmental signification and characteristics of δD and δ18O variation in drip water in Yangkou cave, Chongqing
-
摘要: 为探究重庆金佛山羊口洞滴水δD、δ18O变化特征及其环境意义,于2011年10月—2013年8月,在重庆市南川区金佛山逐月采集大气降水样品及羊口洞6个滴水监测点的滴水样品进行氢氧稳定同位素测定。通过比较降水和滴水δD、δ18O的分布特征、季节变化及其与降水量和温度的相关性发现:(1)6个滴水点δD、δ18O都较均匀地分布在当地降水线附近,表明从降水到形成滴水的过程受蒸发作用影响不大,滴水δD、δ18O体现了当地大气降水δD、δ18O平均水平。(2)受洞穴上覆岩土层的调蓄作用影响,羊口洞各滴水点δD和δ18O的变化范围(-46.77~-62.09 ‰, -7.05 ~ -9.96 ‰)远小于洞外大气降水(5.17 ~-115.63 ‰和-1.44 ~ -16.10 ‰),且较降水存在明显滞后性。但滴水δD、δ18O总体上也表现出与降水相同的夏季偏轻、冬季偏重的趋势,主要受降水水汽源地季节性差异影响。而各个监测点滴水δD和δ18O季节变化差异较大,可能受滴水点上覆岩层裂隙管道发育、覆盖层厚度、岩溶水滞留时间、形成滴水前的运移路径、滴水点的高度和滴率、滴水点距离洞穴出入口的距离等多种原因影响。(3)降水δ18O表现出“降水量效应”和“负温度效应”,羊口洞滴水δ18O与降水量总体上也呈负相关关系,而与温度(水温、洞温)的关系则呈现多样化:1#、2#、5#、6#监测点滴水δ18O与温度不相关,3#点为正相关,4#点为负相关,这与各监测点滴水δ18O季节变化差异较大有关。(4)总体而言,羊口洞滴水δD和δ18O的季节变化不够明显,利用羊口洞石笋进行季节分辨率的古气候重建可能性较低,但滴水δD和δ18O继承了当地大气降水信息,其石笋δ18O可用于重建年际~十年际及更长时间尺度的古气候变化。Abstract: To explore the variation of water δD, δ18O and its environmental significance, drip water and local meteoric precipitation were collected monthly from Yangkou cave in Jinfo Mountain, Nanchuan district, Chongqing, China, from October 2011 to August 2013, which were used for the analyze of the hydrogen and oxygen stable isotopes. By comparing the distribution and seasonal changes of δD and δ18O values, and the correlations with rainfall and temperature, some summaries can be concluded as below. (1) For all the six monitoring sites, the δD and δ18O data of drip water distributed closely to the Local Meteoric Water Line (LMWL), δD=8.75δ18O+22.14, which was built up based on the δD and δ18O data of local precipitation. This means that there was no significant evaporation for the precipitation during the infiltration into the cave, and the δD and δ18O of drip water represent the average composition of local precipitation. (2) The amplitudes of δD and δ18O variation for drip water were -46.77 ‰~ -62.09 ‰ and -7.05 ‰~ -9.96 ‰ respectively, obviously less than the amplitudes of δD and δ18O for local precipitation, which were 5.17 ‰~ -115.63 ‰ and -1.44 ‰~ -16.10 ‰ respectively. In additionally, the δD and δ18O variations of drip water lagged to those of local precipitation. This should be attributed to the adjustment capacity of the overlying soil and bedrock. While, because of the seasonal change of moisture source, for both of the local precipitation and drip water, the δD and δ18O variation charactered as lighter in summer months and heavy in winter months. The relatively extensive δD and δ18O variation of drip water among different drip sites, maybe should be attributed to the difference of fissures in the bedrock, thickness of overlying stratum, residence time of underground water, migration length, dripping height and rate, and the distance between the drip site and entrance, and so on. (3) The δ18O of precipitation presented amount effect to rainfall and negative correlation with temperature. In general, the δ18O of drip water negatively correlated to rainfall too, but the correlation between drip water δ18O and temperature (water temperature and air temperature in cave) was diversified. E.g. there was no correlation for sites 1#、2#、5#、6#, positive correlation for site 3# and negative correlation for site 4#. It seems that these various correlations between drip water δ18O and temperature should partly be attributed to the different seasonal change of drip water δ18O among the drip sites. (4) In a word, mixing effect in the bedrock overlying the cave hiding the seasonal change of δD and δ18O in precipitation, resulted in smooth seasonal change of δD and δ18O in drip water. So, it may be at a low possibility to reconstruct paleoclimate change at seasonal resolution based on the stalagmite in Yangkou cave. While, the δD and δ18O of drip water inherited the change of local precipitation, the stalagmite δ18O in this cave can record the paleoclimate change at long time scale as annual-decades or even longer.
-
Key words:
- cave drip water /
- meteoric precipitation /
- δD /
- δ18O /
- seasonal change /
- rainfall /
- temperature
-
[1] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science,2001,294:2345-2348. [2] Wang Y J,Cheng H,Edwards R L,et al. The Holocene Asian monsoon:Links to solar changes and North Atlantic climate[J]. Science,2005,308:854-857. [3] Wang Y J,Cheng H,Edwards R L,et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature,2008,45:1090-1093. [4] Yuan D,Cheng H,Edwards R L,et al. Timing,duration,and transitions of the last interglacial Asian monsoon[J]. Science,2004,304:575-578. [5] Cheng H,Edwards R L,Wang Y J,et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations[J]. Geology,2006,34:217-220. [6] Cheng H,Edwards R L,Broecker W S,et al. Ice age terminations[J]. Science,2009,326,(5950):248-252. [7] Cheng H,Zhang P Z,Sptl C,et al. The climatic cyclicity in semiarid - arid central Asia over the past 500,000 years[J]. Geophysical Research Letters,2012,39,1,DOI:10. 1029/2011 GL050202. [8] 谭明. 环流效应:中国季风区石笋氧同位素短尺度变化的气候意义——古气候记录与现代气候研究的一次对话[J]. 第四纪研究,2009,29(5):851-862. [9] Zhang P Z,Cheng H,Edwards R L,et al. A test of climate,sun,and culture relationships from an 1810-year Chinese cave record[J]. Science,2008,322:940-942. [10] Burns S J,Fleitmann D,Matter A,et al. Indian Ocean Climate and an Absolute Chronology over Dansgaard/Oeschger Events 9 to 13[J]. Science,2003,301:1365-1367. [11] 李红春,顾德隆,Dorte P,等. 陕南石笋稳定同位素记录中的古气候和古季风信息[J]. 地震地质,2000,22:63-78. [12] 李红春,顾德隆,Lowell D S,等. 高分辨率洞穴石笋稳定同位素应用之一——京津地区500 a来的气候变化δ18O记录[J]. 中国科学(D辑),1998,28(2):181-186. [13] 李廷勇,袁道先,李红春,等. 重庆新崖洞XY2石笋δ18O记录的57~70 ka BP古气候变化及其对D-O和H事件的反映[J]. 中国科学(D辑),2007,37(6):798-803. [14] Fairchild I J,Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews,2009,28(5/6):449-468. [15] 李红春,顾德隆,陈文寄,等. 高分辨率洞穴石笋中稳定同位素应用——北京元大都建立后对森林资源的破坏——δ13C记录[J]. 地质论评,1998,44(5):456-463. [16] 周运超,王世杰. 贵州凉风洞洞穴滴水水文水化学过程分析[J]. 第四纪研究,2005,25 (2):208-215. [17] 罗维均,王世杰. 贵州凉风洞大气降水—土壤水—水的δ18O信号传递及其意义[J]. 科学通报,2008,53(17):2071-2076. [18] Baker A,Genty D,Fairchild I J. Hydrological characterization of stalagmite drip waters at Grottede Villars,Dordogne,by the analysis of in organic species and luminescent organic matter[J]. Hydrology and Earth System Sciences,2000,4:439- 449. [19] Cobb K M,Adkins J F,Partin J W,et al. Regional-scale climate influences on temporal variations of rainwater and cave drip water oxygen isotopes in northern Borneo[J]. Earth and Planetary Science Letters,2007,263:207-220. [20] Fairchild I J. Speleothems as indicators of wet and dry periods. En:Durn,J. J.,Andreo,B. y Carrasco,F. ( Eds. ) Karst,cambio climtico yagues subterr neas. Publicaciones del Instituto Geolgicoy Minero de Espaìa. Serie:Hidrogeologay Aguas Subterr neas 2006,18:21- 28. [21] Karmann I,Cruz F W,Viana J R. Climate influence on trace element geochemistry of water from Santana-Perolas Cave system,Brazil[J]. Chemical Geology,2007,244:232-247. [22] Dreybrodt W,Scholz D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems:From soil water to speleothem calcite[J]. Geochimica et Cosmochimica Acta,2011,75:734-752. [23] 冯慧文. 重庆羊口洞石笋记录的MIS3时期(51.3ka BP~37.8ka BP)古气候事件[D]. 西南大学, 2012. [24] 张平中,陈一萌,Johnson K R,等. 甘肃武都万象洞滴水与现代石笋同位素的环境意义[J]. 科学通报,2004,49(15):1529-1531. [25] 李廷勇,李红春,李俊云,等. 重庆芙蓉洞洞穴沉积物δ13C、δ18O特征及意义[J]. 地质论评,2008,54(5):712-720. [26] Hu C Y,Henderson G M,Huang J H,et al. Report of a three-year monitoring program at Heshang Cave,Central China[J]. International Journal of Speleology,2008,37(3):143-151. [27] 张任,朱学稳,韩道山,等. 重庆市南川金佛山岩溶洞穴发育特征初析[J]. 中国岩溶,1998,17(3):196-211. [28] 王建力,袁道先,李廷勇,等. 气候变化的岩溶记录[M].科学出版社,2009,96-97. [29] 陈虹利,李廷勇,周福莉,等. 基于场降雨数据的大气降水特征分析——以重庆市北碚区西南大学为例[J]. 西南大学学报,2012,34(2):105-113. [30] 陈中笑,程军,郭品文,等. 中国降水稳定同位素的分布特点及其影响因素[J]. 大气科学学报,2010,33(6):667-679. [31] Merlivat J,Jouzel J. Global climatic interpretation of the deuterium - oxygen-18 relationship for precipitation[J]. Journal of Geophysicl Research,1978,84:5029-5033. [32] 李廷勇,李红春,沈川洲,等. 2006~2008年重庆大气降水δD和δ18O特征初步分析[J]. 水科学进展,2010,21(6):757-764. [33] Li T Y,Shen C C,Li H C,et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong cave,Chongqing,China[J]. Geochimica et Cosmochimica Acte,2011,75(15):4140-4156. [34] 王世杰,罗维均,刘秀明,等. 贵州七星洞系统中水文地球化学特征对滴水δ13C-DIC的影响及其意义[J]. 地学前缘,2009,16(6):66-76. [35] 李彬,袁道先,林玉石,等. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J]. 中国科学(D辑),2000,30(1):81-87. [36] 丁一汇,李崇银,何金海,等. 南海季风试验与东亚夏季风[J]. 气象学报,2004,62(5):561-586. [37] Zhou T J,Yu R C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patters in china[J]. Journal of Geophysicl Research,2005,110:D0814,doi:10. 1029/2004 JD005413. [38] Dansgaard W. Stable isotopes in precipitation[J]. Tellus,1964,16(4):436-468. [39] 胡超涌,黄俊华,杨冠青,等. 湖北清江石碳氧同位素组成及其古气候意义[J]. 矿物岩石地球化学通报,2001,20(4):388-390. [40] 汪永进,孔兴功,邵晓华,等. 末次盛冰期百年尺度气候变化的南京石笋记录[J]. 第四纪研究,2002,22(3):243-251. [41] 汪永进,吴江滢,吴金全,等. 末次冰期南京石笋高分辨率气候记录与GRIP冰芯对比[J]. 中国科学(D辑),2000,30(5):533-539. [42] 覃嘉铭,林玉石,张美良,等. 桂林全新世石笋高分辨率δ13C记录及其古生态意义[J]. 第四纪研究,2000,20(4):351-358. [43] 蔡演军,彭子成,安芷生,等. 贵州七星洞全新世石笋的氧同位素记录及其指示的季风气候变化[J]. 科学通报,2001,46(16):1398-1402. [44] 吴夏,朱晓燕,张美良,等. 大气降水中稳定同位素组成的高分辨率记录——以桂林地区为例[J]. 长江流域资源与环境,2013,22(2):182-188. [45] Sp?tl C,Fairchild I J,Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria):Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta,2005,69(10):2451-2468. [46] Liu Y H,Henderson G M,Hu C Y,et al. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event[J]. Nature Geoscience,2013,6(2):117-120. [47] Fairchild I J,Smith C L,Baker A,et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews,2006,75(1):105-153. [48] 谭明,侯居峙,程海. 定量重建气候历史的石笋年层方法[J]. 第四纪研究,2002,22(3):209-219. [49] Griffiths M L,Drysdale R N,Vonhof H B,et al. Younger Dryas–Holocene temperature and rainfall history of southern Indonesia from δ18O in speleothem calcite and fluid inclusions[J]. Earth and Planetary Science Letters,2010,295(1):30-36. [50] Feng W,Casteel R C,Banner J L,et al. Oxygen isotope variations in rainfall,drip-water and speleothem calcite from a well-ventilated cave in Texas,USA:Assessing a new speleothem temperature proxy[J]. Geochimica et Cosmochimica Acta,2014,127:233-250. [51] Li T Y,Shen C C,Huang L J,et al. Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial–interglacial period[J]. Climate of the Past,2014,10:1211-1219. [52] 黄俊华,胡超涌,周群峰,等. 长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J]. 沉积学报,2002,20(3):442-446. [53] 覃嘉铭,袁道先,程海,等. 贵州荔波董歌洞D3石笋碳氧稳定同位素及微量元素记录的环境变化[J]. 地球学报,2004,25(6):625-632. [54] 衣成城,李廷勇,李俊云,等. 芙蓉洞洞穴水离子浓度和元素比值变化特征及其环境意义[J]. 中国岩溶,2011,30(2):200-207. [55] Li J Y,Li T Y,Wang J L,et al. Characteristics and environmental significance of Ca,Mg,and Sr in the soil infiltrating water overlying the Furong Cave,Chongqing,China[J]. Science China Earth Sciences,2013,56(12):2126-2134.
点击查看大图
计量
- 文章访问数: 2163
- HTML浏览量: 315
- PDF下载量: 1263
- 被引次数: 0