渭北中部筛珠洞泉补给来源的再认识
Recognition on recharge of Shaizhudong spring in the central Weibei, Shaanxi Province, China
-
摘要: 筛珠洞泉位于中低山区与渭北黄土台塬区衔接地带。筛珠洞泉区地势整体趋势为西北高东南低,北部以中低山为主,海拔在1 200~1 600 m之间,多由裸露和隐伏碳酸盐岩组成;西南地势逐渐降低,海拔在800~1 000 m之间,为以唐王陵向斜为主的一系列褶皱构造,由奥陶系碎屑岩和碳酸盐岩组成;东南部地势呈阶梯状下降,山前地带海拔多在400~500 m之间,为裸露碳酸盐岩区与山前冲洪积扇区的接触地带。筛珠洞泉作为渭北中部最大的岩溶泉,对于其补给来源前人已做了大量的研究,较为一致的认识是泾河渗漏是筛珠洞泉最主要补给来源,且筛珠洞泉是渭北中部筛珠洞泉域隐伏岩溶系统的集中排泄点。本文根据氢、氧和锶同位素的研究成果,结合水文地球化学及岩溶水文地质条件,对筛珠洞泉的补给来源提出了与前人研究不同的认识,即筛珠洞泉的补给以筛珠洞泉域外西南部岩溶地下水为主;在所有的补给来源中,大气降水、河水及岩溶水所占比例分别为11 %、37 %和52 %;在岩溶水补给中,西南部、西北部及坝址区岩溶水所占比例分别为77.9 %、19.7 %和2.4 %。在此基础上,本文还根据氚同位素资料估算筛珠洞主泉岩溶水的平均滞留时间为62~64年。Abstract: Shaizhudong spring is located between middle-low mountains and Weibei loess tablelands. The overall terrain trend of the study area is that it is higher in the northwest than in the southeast.The north area is mainly middle-low mountains with elevations of about 1 200 to 1 600 m, and it mainly consists of exposed or concealed carbonate rocks. In the southwest the terrain gradually decreases, with altitudes of 800 to 1 000 m, and a series of Tangwangling synclinal fold structures consisting of Ordovician clastic and carbonate rocks. The terrain of the southeast area shows a ladder-like decrease and the elevation of the piedmont zone is between 400 and 500 m, which is located between exposed carbonate area and piedmont alluvial-pluvial fan sector. Shaizhudong spring is the largest karst spring in central Weibei, Shaanxi Province, China. Its supply source has been the topic of a lot of research, and it was thought that Jinghe leakage was the main recharge source, and it was the main discharge point in the hiden karst system of shaizhudong spring area. In this paper, we have a different understanding of the recharge of Shaizhudong spring, based on research into hydrogen, oxygen and strontium isotopes, combined with hydro-geochemistry and karst hydrogeological conditions. Isotope hydro-geochemistry study showed that the recharge was given priority to karst groundwater outside southwest of the Shaizhudong spring area. The proportions of atmospheric precipitation, river water and karst water were 11 %, 37 % and 52 % of all the supply source, and proportion in the southwest, northwest and the dam site area karst water were 77.9 %, 19.7 % and 2.4 % in the karst water supplies, respectively. On this basis, this paper also estimates that the average residence time of Shaizhudong spring karst water is 62-64 years based on tritium isotope data.
-
Key words:
- karst water /
- Shaizhudong spring /
- recharge /
- central Weibei
-
[1] 陕西省地质调查院. 陕西渭北中部岩溶地下水勘察报告[R]. 1999-2002. [2] 黄河勘测设计规划有限公司. 泾河东庄水利枢纽工程项目建议书[R].2012. [3] 时坚,梁永平,王晶. 渭北西部黄土塬隐伏岩溶区地下水资源评价及其开发利用研究[J]. 中国岩溶,2002,21(1):44-50. [4] 林平选,李锋,黄卫星. 水同位素在判别岩溶地下水资源组成中的应用——以筛珠洞泉域为例[J]. 陕西地质,2003,21(1):67-71. [5] Clark I D, Fritz P. Environmental Isotopes in Hydrogeololgy[M]. New York: Lewis Publishers, 1997:64-91. [6] 马致远, 钱会. 环境同位素地下水文学[M]. 陕西西安: 陕西科技出版社, 2004:37-44,69-73. [7] 陈宗宇, 齐继祥, 张兆吉,等. 北方典型盆地同位素水文地质学方法应用[M]. 科学出版社, 2010:20-32. [8] 万军伟, 刘存富, 晁念英,等.同位素水文学理论与实践[M].武汉: 中国地质大学出版社, 2003:195-226. [9] Craig H. Isotopic variation in meteoric waters[J]. Science, 1961, 133: 1702-1703. [10] 龚自珍. 桂林地区岩溶水同位素水文地球化学研究[J]. 地质评论, 1987, 33(4): 346-354. [11] 顾慰祖, 陆家驹,谢民,等. 乌兰布和沙漠北部地下水资源的环境同位素探讨[J]. 水科学进展, 2002 ,13(3):326-332. [12] 秦大军, 庞忠和,Jeffey V T,等. 西安地区地热水和渭北岩溶水同位素特征及相互关系[J]. 岩石学报,2005, (5): 34-39. [13] 尹观,倪师军. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报, 2001, 20(4): 409-411. [14] 马致远, 钱会, 黄建勋,等. 关中盆地南部含水层间相互关系的环境同位素水文地球化学证据[J]. 地球科学与环境学报,2006, 28(2): 69-74. [15] 马致远, 牛光亮, 刘方,等. 陕西渭北东部岩溶地下水强径流带的环境同位素证据及其可更新性评价[J].地质通报,2006, 25(6): 756-761. [16] Clark DI, Lauriol B. Kinetic enrichment of stable isotopes in cryogenic calcites Chemical Geology[J].Chemital Geology, 102, (1):217-228. [17] Baijjali W, Clark I D, Fritz P. The artesian thermal groundwaters of northern Jordan: insights into their recharge history and age[J].Journal of Hydrology,1997,192 (1):355-382. [18] Clark I D, Phillips R J. Geochemical and 3〖KG-*9〗He/4He evidence for mantle and crustal contributions to geothermal fluids in the western Canadian continental margin[J].Journal of Volcanology and Geothermal Research,104, (1):261-276. [19] 林良俊, 王金生. 晋陕峡谷地区岩溶地下水的同位素及水化学分析[J]. 工程勘察,2004, (4): 27-30. [20] 张江华, 梁永平,王维泰,等. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶, 2009, 28(3): 235-241. [21] 郭清海, 王焰新. 流动系统特征的指示意义——以山西神头泉域为例[J]. 地质科技情报, 2006, 25(03) : 12-15. [22] 赵继昌, 耿冬青, 彭建强,等. 长江河源区的河水主要元素与Sr同位素来源[J]. 水文地质工程地质, 2003, (2): 88-98. [23] 王焰新,孙连发,罗朝辉,等. 指示娘子关泉群水动力环境的水化学同位素信息分析[J]. 水文地质工程地质, 1997, (3): 1-5. [24] 周炼,刘厚富,凌文黎,等. Sr同位素在水文地质中的示踪意义——以冀中坳陷地下水为例[J]. 地球学报, 1997, 18(5): 313-315. [25] Odum H T. Strontium in natural waters[J]. Inst. Mar.Sci.,1957,4:22-37. [26] Doyramaci S S, Herczeg A L.Strontium and carbon isotope constraints on carbonate-solution interactions and inter aquifer mixing in ground waters of thesemi-arid Murray Basin. Australia[J]. Journal of Hydrology, 2002, 262(1):50-67. [27] Ne’grel P,Petelet-Giraud E. Strontiun isotopes as tracers of groundwater-induced floods: the Somme case study (France)[J]. Journal of Hydrology,2005,305(1):99-119. [28] Gao Xubo, Wang Yanxin. Trace elements and environmental isotopes as tracers of surface water–groundwater interaction: a case study at Xin’an karst water system, Shanxi Province, Northern China[J]. Earth Environment Science,2010,59(6):1223-1234.
点击查看大图
计量
- 文章访问数: 2007
- HTML浏览量: 297
- PDF下载量: 1423
- 被引次数: 0