Cd2+胁迫下小球藻(Chlorella vulgaris)对岩溶水HCO3-、Ca2+利用研究——以桂林寨底地下河为例
Utilization of karst water HCO3-, Ca2+ by Chlorella vulgaris under different Cd2+ concentrations stress
-
摘要: 初级生产者藻类对维持生态系统稳定具有重要的意义。2012年底广西龙江重金属Cd2+污染对其下游水体中水生生物造成了严重的影响,为了解Cd2+对岩溶水体中藻类碳汇效应的影响,针对广西龙江重金属Cd2+污染,文章通过室内封闭培养体系研究了在0、10、20、40 μmol/L不同Cd2+浓度胁迫下,小球藻对岩溶水中游离CO2、HCO3-和Ca2+的利用情况以及体系中pH和生物量的相应变化。结果表明:当Cd2+浓度在0~10 μmol/L时,小球藻对岩溶水中Ca2+和HCO3-的利用基本上没有受到影响;当Cd2+浓度在10~40 μmol/L时,对小球藻利用Ca2+和HCO3-具有一定的抑制作用;当Cd2+浓度高于40 μmol/L时,小球藻将不能利用岩溶水中Ca2+和HCO3-。同时pH漂移实验表明:当Cd2+浓度在0~20 μmol/L时,小球藻能同时利用岩溶水中游离CO2和HCO3-进行光合作用;Cd2+浓度为10 μmol/L时,体系中藻细胞生物量与空白对照组基本相同;当Cd2+浓度在20~40 μmol/L时,小球藻只能利用岩溶水中游离CO2进行光合作用;当Cd2+浓度为20 μmol/L时,藻细胞生物量为空白对照组的一半;当Cd2+浓度为40 μmol/L时,小球藻生物量仅为20 μmol/L时的一半。Abstract: The carbon sink effect of algae is a hot topic in global carbon sink research. At the end of 2012, the Longjiang river cadmium pollution event greatly harmed downstream aquatic life. In order to study the effect of cadmium pollution on the algae carbon sink effect, this experiment explored the HCO3- and Ca2+ in karst water used by Chlorella vulgaris cultivated in a closed system under the stress of different Cd2+ concentrations (0, 10, 20, 40 μmol/L), as well as changes to pH and the biomass of Chlorella vulgaris in the system. The results indicated that HCO3- and Ca2+ utilization by Chlorella vulgaris photosynthesis is essentially unchanged when the Cd2+ concentration is in the range of 0 μmol/L to 10 μmol/L. When the Cd2+ concentration is 10-40 μmol/L, the use of HCO3- and Ca2+ in karst water by Chlorella vulgaris is inhibited. When the Cd2+ concentration exceeds 40 μmol/L, Chlorella vulgaris essentially doesn’tuse the HCO3- and Ca2+ in the closed system. Furthermore, pH drift experiments show that when the Cd2+ concentration is in the 0 μmol/L to 20 μmol/L range, Chlorella vulgaris can simultaneously use the free CO2 and HCO3- in karst water for photosynthesis. But when the Cd2+ concentration is between 20 μmol/L and 40 μmol/L, Chlorella vulgaris only uses free CO2 as the carbon source. Therefore, the cadmium pollution in karst aquatic ecosystem has a pronounced impact on the algae carbon sink.
-
Key words:
- karst water /
- Chlorella vulgaris /
- stress of different Cd2+ concentrations /
- pH drift /
- carbon sink
-
[1] Yuan Daoxian. The carbon cycle in karst[J]. Zeitschrift für Geomorphologie Neue Folge, 1997, 108(Suppl-Bd): 91-102. [2] 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘, 1997 , 4(1) : 17-25. [3] 曹建华, 袁道先, 潘根兴, 等. 岩溶动力系统中的生物作用机理初探[J]. 地学前缘(中国地质大学, 北京), 2001, 8(1): 203-207. [4] Yan Liu, Zaihua Liu, Jinliu Zhang, et al. Experimental study on the utilization of DIC by Oocystis solitaria Wittr and its influence on the precipitation of calcium carbonate in karst and non-karst waters[J]. Carbonates and Evaporites, 2010, 25(1): 21-26. [5] Pei Wang, Qingjing Hu, Hui Yang, et al. Preliminary study on the utilization of Ca2+ and HCO3- in karst water by different sources of Chlorella vulgaris[J]. Carbonates and Evaporites, 2013, DOI: 10.1007/s13146-013-0170-5. [6] 金相灿. 中国湖泊富营养化及其防治研究[M]. 北京: 中国环境科学出版社, 1990: 46-50. [7] 陈静生, 周家毅. 中国水环境重金属研究[M]. 北京: 中国环境科学出版社, 1992: 41-72. [8] 戴世明. 镉污染的水处理技术研究进展[J]. 安全与环境工程, 2006, 13(3): 63-71. [9] 李建宏, 浩云涛, 翁永萍. Cd2+胁迫条件下椭圆小球藻的生理应答[J]. 水生生物学报, 2004, 28(6): 659-663. [10] 朱卓洪,李飞永,陈金斯.珠江河口铜、铅、锌、铬和镉对单细胞藻类生长的影响[J].热带地理,1992,11(2): 31-37. [11] 于小娣, 师玥, 周斌, 等. 重金属离子胁迫对赤潮微藻的急性毒性[J]. 环境科学研究,2012, 25(9): 1047-1053. [12] 况琪军, 夏宜睁, 惠阳. 重金属对藻类的致毒效应[J]. 水生生物学报, 1996, 20(3): 277-283. [13] 胡鸿钧, 李尧英, 魏印心, 等. 中国淡水藻类[M]. 上海: 科学技术出版社,1980:1-318. [14] 魏印心. 中国淡水藻志[M]. 北京: 科学出版社,2003:1-84. [15] 李娜, 毕永红, 高大文, 等. 大气CO2浓度变化对铜绿微囊藻生长的影响[J]. 水生生物学报,2011, 35(4): 698-702. [16] 浩云涛, 李建宏, 潘欣, 等. 椭圆小球藻(Chlorella ellipsoidea)对4种重金属的耐受性及富集[J]. 湖泊科学,2001, 13(2): 158-162. [17] Raven J A. Inorganic carbon acquisition by marine autotrophs[J]. Advance in Botanical Research, 1997, 27: 85-209. [18] 曹建华, 袁道先,裴建国,等. 受地质条件制约的中国西南岩溶生态系统[M]. 北京:地质出版社, 2005. [19] 岳国锋, 王金霞, 朱明远,等. 藻类无机碳营养的研究进展(Ⅱ)——藻类对无机碳利用的机理及其调节[J]. 海洋科学, 2003, 27(6): 31-34. [20] Spence D H N, Maberly S C. Occurrence and ecological importance of HCO3- use among aquatic higher plants. In: Lucas W J, Berry J A (Eds.), Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms[M]. American Society of Plant Physiologists, Rockville, M D, 1985:125-145. [21] Maberly S C. Exogenous source of inorganic carbon for photosynthesis by marine macroalgae[J]. Journal of Phycology, 1990, 26(3): 439-449. [22] Michael J Berridge, Martin D Bootman,Peter Lipp. Calcium-a life and death signal[J]. Nature, 1998, 395(6703):645-648. [23] Lu Y Z. Research process of the calcium signaling in Cyanobacteria[J]. Marine Science Bulletin, 2010, 12(2): 26-31. [24] Hanson J B. The functions of calcium in plant nutrition[J]. Advances in Plant Nutrition, 1984:149-208. [25] Lerman A, Mackenzie F T. CO2 air-sea exchange due to calcium carbonate and organic matter storage and its implications for the global carbon cycle[J]. Aquatic Geochemistry, 2005, 11(4): 345-390. [26] 浩云涛, 李建宏, 潘欣, 等. 椭圆小球藻(Chlorella ellipsoidea)对4种重金属的耐受性及富集[J]. 湖泊科学,2001, 13(2): 158-162.
点击查看大图
计量
- 文章访问数: 1908
- HTML浏览量: 348
- PDF下载量: 1530
- 被引次数: 0