丽江市黑龙潭泉群断流的人工神经网络模拟
Artificial neural network simulation to zero flow of the Heilongtan spring groups in Lijiang
-
摘要: 近年来,云南省丽江市著名景点黑龙潭泉群断流频发,这将严重威胁丽江市旅游业的可持续发展。为了正确认识黑龙潭泉群断流的原因,并掌握其发生的规律,本文在对该泉群的水文地质条件、降水量和断流的关系进行分析的基础上,对该泉群的断流情况开展了人工神经网络模拟研究。本文发现黑龙潭泉群属于非全排型山前断裂溢流岩溶泉;年降水量不足与该泉群的断流具有一定的因果关系;构建了网络拓扑结构为6-13-3的BP人工神经网络模型对黑龙潭泉群的不同断流情况进行了模拟,该模型以前期降水量、温度与湿度作为输入向量参数,以1953-2002年的数据作为训练样本,以2003—2012年的数据作为模型检验样本,检验结果与实际情况吻合度约为90 %,表明该模型可以较好地模拟黑龙潭泉群的断流情况。Abstract: Zero flow of the Heilongtan spring group that is famous scenery in Lijiang, Yunnan Province frequently occurs recently, which severely threatening the sustainable development of Lijiang tourism. In order to know the real reason for zero flow of the Heilongtan spring group and its occurrence regularity, hydrogeological conditions and correlation between precipitation and zero flow of the spring group are analyzed systematically, and a simulation based on artificial neural network model is made also. It is found that the Heilongtan spring group is an incomplete-drainage overflow karst spring at the piedmont formed by fractures. There is causality between the annual precipitation deficit and the zero flow of the Heilongtan spring group. Finally, a BP artificial neural network model with 6-13-3 network topology of the Heilongtan spring group’s zero flow is established. The model uses antecedent precipitation, air temperature and humidity as input vector parameters to simulate different conditions of the Heilongtan spring group’s zero flow. Training samples come from data from 1953 to 2002 , and testing samples come from 2003 to 2012 in the model. At last, it is found that the testing results are coincide with real situation to great extent.
-
[1] 郭莉莉.丽江古城滨水休闲空间研究[D].昆明理工大学硕士学位论文,2008,1-3. [2] 华勇.逐水而居,得水而兴-丽江古城之水对现代小区水体设计的启示[J].科教文汇,2006.04(上半月刊):116. [3] 范弢,庄立会.丽江城市水资源评价[J].水资源保护.2008,24(2):65-69. [4] 范弢,杨世瑜.丽江古城水环境现状与调控对策研究[J].资源开发与市场.2007,23(2):153-155. [5] 范弢,杨世瑜.丽江城市地下水脆弱性评价[J].昆明理工大学学报(理工版),2007,32(1):91-96. [6] 范弢,杨世瑜,庄立会.丽江市水资源环境现状与应急地下水源地研究[J].云南师范大学学报,2008,28(1):66-71. [7] 李继木.丽江水资源调查评价[D].昆明理工大学硕士学位论文,2007. [8] 陈宏峰,朱明秋,夏日元,等.湖南洛塔干河猪场表层岩溶泉BP人工神经网络分析[J].中国岩溶,2005,24(4):300-304. [9] 柳大伟,蒋忠诚,陈伟韦.基于Elman神经网络的表层岩溶泉动态预测及应用——以广西平果县果化镇布洋1号表层岩溶泉为例[J].中国岩溶,2007,26(1):71-74. [10] 程庭,陈植华,时坚,等.基于ANN模型重塑岩溶地下河系统流量数据可行性研究[J].中国岩溶,2006,25(2):121-125. [11] 周翔,朱学愚.人工神经网络在岩溶水资源评价中的应用[J].中国岩溶,1999,18(4):337-341. [12] 郑长统,梁虹.基于人工神经网络的喀斯特地区水资源承载力综合评价——以贵州省为例[J].中国岩溶,2010,29(2):170-175. [13] 王延福,靳德武,曾艳京,等.岩溶煤矿矿井煤层底板突水非线性预测方法研究[J].中国岩溶,1998,17(1):57-66. [14] 杨世瑜.云南省丽江市城市环境地质问题调查评价报告[R].昆明:云南省地质调查院,2005. [15] 王法.丽江黑龙潭泉眼断流,专家:受降水量直接影响[N/OL].云南网-新闻频道-州市联播, 2012-12-24.http://news.yunnan.cn/html/2012-12/24/content_2547287.htm. [16] 王法.丽江黑龙潭断流1年有余,专家:干旱年应人工补水[N/OL].云南网-社会频道-社会热点, 2013-3-1. http://society.yunnan.cn/html/2013-03/01/content_2635384.htm. [17] 和慧东,刘晓佳.黑龙潭断流一年了,丽江人,我们能做点什么?[N/OL]云南信息报电子版-云信网,2013-1-17. http://news.ynxxb.com/content/2013-1/17/N78098687720.aspx. [18] 王法.丽江黑龙潭泉群完全断流[N/OL].云南网-图片新闻,2012-2-3. http://lijiang.yunnan.cn/html/2012-02/03/content_2025459.htm. [19] 刘晓佳,和慧东,张勇. 黑龙潭断流引起中央关注,引来中科院专家把脉——黑龙潭断流,降水与地下水不足是“罪魁”[N/OL].云南信息报电子版-云信网,2012-8-23. http://news.ynxxb.com/content/2012-8/23/N99003503802.aspx. [20] 范弢.云南丽江生态地质环境演化过程与趋势研究[D].昆明理工大学博士学位论文,2008,72. [21] 中国人民解放军00939部队.1:20万丽江幅区域水文地质普查报告[R].昆明:云南省地矿局,1979. [22] 超伦巴根,贾德彬.数值计算方法[M].中国水利水电出版社,北京,2007,289-297. [23] 闻新,周露,王丹力,等.MATLAB神经网络应用设计[M].北京:科学出版社,2001,207-232. [24] 柳小桐.BP神经网络输入层数据归一化研究[J].机械工程与自动化,2010,(3):122-123. [25] 罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真,2004,21(5):109-111. [26] 孙帆,施学勤.基于MATLAB的BP神经网络设计[J].计算机与数字工程,2007,35(8):124-126. [27] 桂现才. BP神经网络在MATLAB上的实现与应用[J].湛江师范学院学报,2004,25(3):79-83.
点击查看大图
计量
- 文章访问数: 2738
- HTML浏览量: 301
- PDF下载量: 1936
- 被引次数: 0