• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
HE Xingtong, YUAN Shujie, PAN Ti, GU Xiaoping, YU Fei. Spatial and temporal distribution of soil humidity in karst areas of Guizhou Province[J]. CARSOLOGICA SINICA, 2018, 37(4): 562-574. doi: 10.11932/karst2018y08
Citation: HE Xingtong, YUAN Shujie, PAN Ti, GU Xiaoping, YU Fei. Spatial and temporal distribution of soil humidity in karst areas of Guizhou Province[J]. CARSOLOGICA SINICA, 2018, 37(4): 562-574. doi: 10.11932/karst2018y08

Spatial and temporal distribution of soil humidity in karst areas of Guizhou Province

doi: 10.11932/karst2018y08
  • Publish Date: 2018-08-25
  • The spatiotemporal distribution, the coefficient of variation of soil moisture and the relationship between soil layers(0-100 cm) in different agricultural climate zones are analyzed, using daily data of soil moisture precipitation and temperature extracted from 53 automatic observation stations in karst areas of Guizhou in the period of 2011 to 2015. The results show that,(1)the ranges of soil moisture in every region are slightly different. According to the 0-100cm deep soil layer’s difference in soil moisture, the soil can be divided into three types, i.e. persistent soil drought, seasonal soil drought and wet soil zones.(2)Similarly, based on the coefficients of variation, the distribution of the soil moisture at profile with the depth range of 0-100 cm in each region can also be divided into consistent variation, seasonal variation, and persistent variation zones. (3)The research on the relationship between 10-50 cm and the soil moisture in the lower layers in karst regions of Guizhou province suggests that upper soil moisture has an effect on the lower layer in warm humid, moderate wet and alpine regions, the upper soil layer has effect on the lower 20-40 cm soil layer but its lower 50-90 cm soil layer is relatively slight. From the sliding days, the days with the maximum correlation coefficients of 10-20, 30-50 and 60-100 cm layer increase with depth in each region, which are 3-10, 10-20, 20-30 days, respectively. (4)Comparing the distribution of soil moisture and its variation coefficient in each region shows that the low value region of soil moisture largely corresponds to the area of large variation coefficient. Besides the direct relationship with precipitation and temperature, the soil moisture may also be related to its soil water holding capacity and other factors.

     

  • loading
  • [1]
    蒋冲,王飞,穆兴民,等.黄土高原农田土壤湿度演变及其与气候变化的响应关系[J].干旱地区农业研究,2012,30(3):234-243.
    [2]
    兰鑫宇, 郭子祺, 田野,等. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6):668-679.
    [3]
    Wen J, Su Z, Ma Y. Determination of land surface temperature and soil moisture from tropical rainfall measuring mission/Microwave imager remote sensing data[J]. Journal of Geophysical Research Atmospheres,2003,108(D2):ACL 2~1-ACL 2-10.
    [4]
    秦大河.气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7):874-883.
    [5]
    陈洪松, 聂云鹏, 王克林. 岩溶山区水分时空异质性及植物适应机理研究进展[J]. 生态学报, 2013, 33(2):317-326.
    [6]
    Perrin J, Jeannin P Y, Zwahlen F. Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, milandre test site, switzerland[J].Journal of Hydrology,2003,279(1-4):106-124.
    [7]
    刘伟, 王世杰, 罗维均,等. 贵州荔波喀斯特与非喀斯特地区土壤水运移的对比研究[J]. 地球与环境, 2011, 39(2):137-149.
    [8]
    宋同清, 彭晚霞, 杜虎,等. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 2014, 34(18):5328-5341.
    [9]
    马柱国, 魏和林,符涂斌.中国东部区域土壤湿度的变化及其与气候变率的关系[J]. 气象学报, 2000, 58(3):278-287.
    [10]
    张秀芝, 吴迅英, 何金海. 中国土壤湿度的垂直变化特征[J]. 气象学报, 2004, 62(1):51-61.
    [11]
    陈少勇, 郭凯忠, 董安祥. 黄土高原土壤湿度变化规律研究[J]. 高原气象, 2008, 27(3):530-537.
    [12]
    李明星, 马柱国, 牛国跃. 中国区域土壤湿度变化的时空特征模拟研究[J]. 科学通报, 2011, 56(16):12881300.
    [13]
    赖欣, 文军, 岑思弦,等. CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究[J]. 大气科学, 2014, 38(3):499-512.
    [14]
    左志燕, 张人禾. 中国东部春季土壤湿度的时空变化特征[J]. 中国科学(D辑:地球科学), 2008, 38(11):1428-1437.
    [15]
    朱乐天, 焦峰, 刘源鑫,等. 黄土丘陵区不同土地利用类型土壤水分时空变异特征[J]. 水土保持研究, 2011, 18(6):115-118.
    [16]
    蔡进军, 张源润, 潘占兵,等. 宁夏黄土丘陵区苜蓿土壤水分的时空变异特征[J]. 水土保持研究, 2016, 23(1):75-79,85.
    [17]
    张继光, 陈洪松, 苏以荣,等. 喀斯特山区洼地表层土壤水分的时空变异[J]. 生态学报, 2008, 28(12):6334-6343.
    [18]
    徐慧芳, 宋同清, 黄国勤,等. 喀斯特峰丛洼地区坡地不同土地利用方式下土壤水分的时空变异特征[J]. 生态学报, 2014, 34(18):5311-5319.
    [19]
    刘海隆, 蒋太明, 刘洪斌,等. 不同土地利用方式对岩溶山区旱坡地土壤水分时空分异的影响[J]. 土壤学报, 2005, 42(3):428-433.
    [20]
    王家文, 周跃, 肖本秀,等. 中国西南喀斯特土壤水分特征研究进展[J]. 中国水土保持, 2013(2):37-41,69.
    [21]
    夏雯, 黄代民, 崔晨,等. 西南喀斯特地区土壤水分研究进展[J]. 中国农学通报, 2009, 25(23):442-446.
    [22]
    王朝文,张玉环. 贵州省农业气候区划[M].贵阳:贵州人民出版社, 1989:55-56.
    [23]
    中华人民共和国国家标准GB/T 20481-2006. 气象干旱等级[M]. 北京: 中国标准出版社, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2069) PDF downloads(726) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return